Extracting data from figures using software

Prof. Livia Puljak University of Split School of Medicine Cochrane Croatia

Data presented only as figures

- Data extraction important for systematic reviews (SRs)
- Published randomized controlled trials (RCTs) sometimes contain numerical data presented only in figures
- Authors of SRs may request those data from study authors, which seldom yields results

Cochrane Handbook

- No guidance about data extraction from figures
- So, what do the Cochrane authors do when confronted with data presented only in figures?

Our first study

• Vucic et al. Survey of Cochrane protocols found methods for data extraction from figures not mentioned or unclear. Journal of Clinical Epidemiology. 2015;68(10):1161-1164.

- Analyzed 589 protocols
- 33 (5.6%) mentioned data extraction from figures in Methods section
- One protocol specified that computer software will be used for data extraction from figures

Survey of Cochrane protocols found methods for data extraction from figures not mentioned or unclear

Manual vs software extraction: which is better?

- Our second study
- Jelicic Kadic et al. Extracting data from figures with software was faster, with higher interrater reliability than manual extraction. Journal of Clinical Epidemiology. 2016;74:119-23

Our methods

- Data points from graphs/figures published in RCTs
- Extracted by two authors independently
- Two methods: manual estimation and software extraction with the Plot Digitizer, open source software
- Corresponding authors of each RCT were contacted up to four times via e-mail to obtain exact numbers that were used to create graphs
- Accuracy of each method was compared against the source data from which the original graphs were produced

Our results

- Software data extraction was significantly faster, reducing time for extraction for 47%
- Percent agreement between the two raters was 51% for manual and 53.5% for software data extraction
- Percent agreement between the raters and original data was 66% vs. 75% for the first rater and 69% vs. 73% for the second rater, for manual and software extraction, respectively

Where to find Plot Digitizer

- An open source software
- Available at: <u>http://plotdigitizer.sourceforge.net/</u>
- Works with X-Y scatter or line plots
- It is free 🕲

How it works

- 1. Install Plot Digitizer
- 2. Digitize your photos
 - Software will recognize GIF, JPEG, or PNG format
- 3. Import a figure into software
- Calibrate a figure "show" the software where is X and Y axis and how long are they
- 5. Click on a data point and software will provide numerical values for X and Y axis

How to digitize the photos?

- You can download them directly from Internet, if possible and available online in a useful format
- Or save on a computer with a snipping tool
- Scan from the paper

An example: figure

https://www.researchgate.net/profile/Alan_Dine/publication/287140750/figure/fig1/AS:378447433093120@1467240307250/Figure-1-Mean-Pain-Intensity-versus-Time-plot-for-hemorrhoidectomy-study-C-316-FDA.png

What you need to extract

- For data points that you need
- Extract the number for the value and error bar

How to install the program?

- Follow instructions from the website
- <u>http://plotdigitizer.sourceforge.net/</u>
- Click on the download
- Choose a folder where to save it
- Zip file will be saved to your computer
- Unpack the zip file

Contents of the folder

- To use the program:
 - Clik on **PlotDigitizer.exe**

This screen will pop up

🛃 Untitled										—		×	
File Edit Analysis Windows Help													
Despe	eckle	Calibr	ate ReCalib Y D)igitize Undo Do	ne	Zoom: Out	t In 100	%		Grid Lines			
x =		y =		pixels	Open a p	plot to digitiz	e.						

Next step: import figure

- Click on "File"
- Then click on "Open" from the drop-down menu
- Choose the figure from your computer

After importing figure, screen looks like this:

Next step: calibrate X axis

- Choose most negative end of X axis line (click on it)
- New window will open up
- Enter the value, in this case 0
- Click "Okay

Then enter value for Y min

Choose most positive end of X axis

- Click on the last value of X axis line (here: 72)
- New window will open up
- Enter the value, in this case 72
- Click "Okay

Choose most postive end of Y axis

- Click on the last value of Y axis line (here: 10)
- New window will open up
- Enter the value, in this case 10
- Click "Okay

A note

- Even though in this case you need only values from Y axis
- You still need to calibrate also values from the X axis
- The program requires it, even though irrelevant for you

Next: enter axis names and values

- After you entered value for the most positive end of Y axis
- New pop-up window appears
- You need to enter X axis name
- Choose a name, or just leave X (written on default)
- The same goes for Y axis

Now your plot is digitized

 Please note red line and number (X axis), and blue line and number (Y axis)

To obtain a value for points you need

- Now click on all points for which you need values
- You can choose multiple points
- When you are finished choosing, click on Done
- Your values will appear in a new popup window
- For the purpose of this demonstration, I clicked on three dots showed with yellow lines here on the right

Digitized points show up – I need Y axis here; X axis is for me here irrelevant

You need to calculate values of error bars yourself

- The program gives me value for a certain data point on this graph
- If you need a value for error bar, you will have to calculate it
- Here:
 - 6.54 main effect
 - 6.99 first error bar
 - 6.00 second error bar
 - Subtract

ile	Digitized Points	_	×
e	File Edit Windows H	lelp	bt
-	x	Y	F
	3.91868	6.54208	
	3.76192	6.99827	_
	3.77036	6.00967	

You can save digitized points

- Go to window with numbers (digitized points)
- Go to File
- Choose Save as
- Save in a desired location

Thank you for your attention

livia@mefst.hr

