

Cochrane Bias Methods Group (BMG)

Other potential bias

Isabelle Boutron French Cochrane Centre Bias Method Group University Paris Descartes

Outlines

- RoB tool for specific design
 - Cross over trial
 - Cluster randomized controlled trials
- Mono vs multicentric trials

The Risk of Bias Tool

http://www.cochrane-handbook.org/

Other risk of bias

Baseline imbalance

- Imbalance in factors that are strongly related to outcome measures
- Blocked randomization in unblinded trials
- Differential diagnostic activity
 - Adverse event of the drug could lead to specific exams and differential diagnostic activities

Design-specific risks of bias

Design-specific risks of bias

5

0 16 Special topics in statistics
💫 16. 1 Missing data
 16.2 Intention-to-treat issues
16.3 Cluster-randomized trials
? 16.3.1 Introduction
? 16.3.2 Assessing risk of bias in cluster-randomized trials
? 16.3.3 Methods of analysis for cluster-randomized trials
16.3.4 Approximate analyses of cluster-randomized trials for a meta-analysis: effective sample sizes
? 16.3.5 Example of incorporating a cluster-randomized trial
16.3.6 Approximate analyses of cluster-randomized trials for a meta-analysis: inflating standard errors
? 16.3.7 Issues in the incorporation of cluster-randomized trials
? 16.3.8 Individually randomized trials with dustering
16.4 Cross-over trials
2 16.4.1 Introduction
? 16.4.2 Assessing suitability of cross-over trials
? 16.4.3 Assessing risk of bias in cross-over trials
? 16.4.4 Methods of analysis for cross-over trials
? 16.4.5 Methods for incorporating cross-over trials into a meta-analysis
16.4.6 Approximate analyses of cross-over trials for a meta-analysis
? 16.4.7 Issues in the incorporation of cross-over trials
16.5 Studies with more than two intervention groups
? 16.5.1 Introduction
? 16.5.2 Determining which intervention groups are relevant
? 16.5.3 Assessing risk of bias in studies with more than two groups
? 16.5.4 How to include multiple groups from one study
? 16.5.5 Heterogeneity considerations with multiple-intervention studies
? 16.5.6 Factorial trials
16.6 Indirect comparisons and multiple-treatments meta-analysis
16.7 Multiplicity and the play of chance
16.8 Bayesian and hierarchical approaches to meta-analysis
16.9 Rare events (including zero frequencies)
? 16.9.1 Meta-analysis of rare events
? 16.9.2 Studies with zero-cell counts
? 16.9.3 Studies with no events
 ? 16.9.4 Confidence intervals when no events are observed
? 16.9.5 Validity of methods of meta-analysis for rare events

Cross over trials

- Was use of a cross-over design appropriate?
 - Stable condition
- Is it clear that the order of receiving treatments was randomized?
- Can it be assumed that the trial was not biased from carry-over effects?
- Are unbiased data available?
 - > Only first period data are available: High risk of bias

Cluster RCTs

- Recruitment bias
- Baseline imbalance
- Loss of clusters
- Incorrect analysis

Cluster RCTs

Recruitment bias

- Individuals are recruited to the trial after the clusters have been randomized
- Knowledge of whether each cluster is an 'intervention' or 'control' cluster could affect the types of participants recruited
- Baseline imbalance related to the small number of clusters
- Loss of clusters
- Incorrect analysis
 - account for clustering in their analyses

RESEARCH

ARTIST (osteoarthritis intervention standardized) study of standardised consultation versus usual care for patients with osteoarthritis of the knee in primary care in France: pragmatic randomised controlled trial

P Ravaud, professor of epidemiology¹ R-M Flipo, professor of rheumatology ² I Boutron, assistant professor of epidemiology¹ C Roy, statistician¹ A Mahmoudi, general practitioner³ B Giraudeau, assistant professor of statistics⁴ T Phamassistant professor of rheumatology⁵

Experimental treatment: Standardised consultation

- Education on osteoarthritis and treatment management;
- Information on physical exercises
- Information on weight loss

- Comparator: usual care
- Outcome: Weight and physical activities
- Recruitment: Rheumatologists recruited patients after knowing the treatment assignment.

RECRUITMENT BIAS

Baseline data

- Standardised consultation: Weight (kg) = 84.1 (12.9)
- Usual care: Weight (kg) = 81.4 (13.6)

Annals of Internal Medicine RESEARCH AND REPORTING METHODS

Single-Center Trials Show Larger Treatment Effects Than Multicenter Trials: Evidence From a Meta-epidemiologic Study

Agnes Dechartres, MD; Isabelle Boutron, MD, PhD; Ludovic Trinquart, MSc; Pierre Charles, MD; and Philippe Ravaud, MD, PhD

Background: A recent study suggested that results of single-center trials are frequently contradicted when similar trials are performed in multicenter settings.

Purpose: To perform a meta-epidemiologic study to evaluate whether estimates of treatment effect differ between single-center and multicenter randomized, controlled trials (RCTs).

log odds ratio to take publication bias into account. Forty-eight meta-analyses were selected, including 421 RCTs (223 were single-center and 198 were multicenter). Single-center RCTs showed a larger intervention effect than did multicenter RCTs (combined ROR, 0.73 [95% CI, 0.64 to 0.83]), with low heterogeneity across individual meta-analyses ($l^2 = 12.0\%$; P = 0.24). Adjustment for

- Two previous studies suggested that the results of single-center and multicenter RCTs could be different:
 - In 1989, Berlin¹ suggested that single-center studies tended to show larger treatment effect on survival than did multicenter trials after adjustement for sample size
 - In 2009, Bellomo² highlighted the limits of single-center RCTs in the field of critical care medicine:
 - The results of many single-center RCTs have been contradicted when performed in multicenter setting

¹ Berlin and colleagues. *Journal of the American Statistical Association.* 1989.

² Bellomo and colleagues. Crit Care Med. 2009.

Methods

Design

- Meta-epidemiological study on a collection of meta-analyses of binary outcomes
- Data sources and searches
 - Meta-analyses of RCTs published in the Issue 4, 2008 of the Cochrane Collaboration and in Pubmed (high-impact factor journals)
- 48 Meta-analysis selected
 - 421 RCTs contributing to the analysis

Results

	Single-center RCTs N=223	Multicenter RCTs N=198	
Interventions			
✓ Nonpharmacologic treatments	95 (43%)	86 (43%)	
Funding source			
✓ Public	64 (29%)	56 (28%)	
✓ Private	36 (16%)	102 (52%)	
✓ Not reported	123 (55%)	40 (20%)	
Sample size (Median [Q1-Q3]	90 [50-153]	243 [126-521]	
Year of publication ✓ before 2000	98 (44%)	54 (27%)	

Results

RoB tool	Single-center RCTs N=223	Multicenter RCTs N=198	
Sequence generation			
✓Low risk of bias	75 (34%)	90 (45%)	
Allocation concealment			
✓Low risk of bias	32 (14%)	68 (34%)	
Blinding			
✓Low risk of bias	151 (68%)	157 (79%)	
Incomplete outcome data			
✓Low risk of bias	68 (31%)	55 (28%)	
Selective outcome reporting			
✓Low risk of bias	72 (32%)	134 (68%)	
Overall risk of bias			
✓Low risk of bias	11 (5%)	17 (9%)	
✓high risk of bias	39 (17%)	57 (29%)	
✓Unclear	173 (78%)	124 (62%)	

Weights are from random effects model

17

Single-center RCTs show larger effect Multicenter RCTs show larger effect Ratio of odds ratio

Results

Overall results

- ▶ ROR = 0.73 [0.64-0.83]; I² = 12%
- Subgroup analysis
 - Non-pharmacologic treatments (NPT): ROR = 0.66 [0.53-0.82]; I² = 17%
 - Pharmacologic treatments (PT):
 ROR = 0.80 [0.69-0.93]; I² = 3.3%
 - Interaction between PT and NPT (p = 0.104)

Sensitivity analyses

19

Impact of single centre status on estimates of intervention effects in trials with continuous outcomes: meta-epidemiological study

OPEN ACCESS

Aïda Bafeta *PhD student*¹, Agnes Dechartres *assistant professor of epidemiology*¹²³, Ludovic Trinquart *senior statistician*⁴, Amélie Yavchitz *PhD student*¹, Isabelle Boutron *associate professor of epidemiology*¹²³³, Philippe Ravaud *professor of epidemiology and director*¹²³⁴

> 26 meta-analysis (Cochrane)> 292 RCTs

Meta-analysis	No of single centre trials	No of multicentre trials	Difference in standardised me differences (95%	Weight (%) ean random), Difference in standardised mean differences (95% CI)	
Non-pharmacological interve	ntions		differences (55 A	encers	unterences (55% city	
Akechi et al 2007 ²¹	3	3		1.04	-0.49 (-1.29 to 0.32)	
Bowen and Lincoln 2007 ³¹	4	2		0.75	0.43 (-0.52 to 1.38)	
Cramp and Daniel 200833	5	6		2.50	0.20 (-0.32 to 0.73)	
Eccleston et al 2009 ³⁵	4	1		0.40	-0.48 (-1.79 to 0.82)	
Foster et al 2007 ³⁶	3	8		27.20	-0.15 (-0.31 to 0.01)	
Fransen and McConnell 200	9 ³⁷ 19	7		8.46	-0.19 (-0.47 to 0.09)	
French et al 2007 ⁴⁷	5	2		- 4.05	0.10 (-0.31 to 0.51)	
Gava et al 2007 ²²	8	2		0.45	-0.49 (-1.72 to 0.74)	
Hesse et al 2007 ³⁸	5	3		3.94	-0.07 (-0.49 to 0.34)	
Liu and Latham 2009 ⁴⁰	24	9		16.32	-0.04 (-0.24 to 0.17)	
O'Connor et al 2009 ⁴⁸	9	8		- 3.91	0.11 (-0.31 to 0.53)	
Sirtori et al 2009 ²⁶	2	4		1.31	0.18 (-0.55 to 0.90)	
Smith and Lasserson 20092	8	1		1.48	-0.49 (-1.17 to 0.19)	
Spittle et al 2007 ⁴²	5	3		2.02	0.18 (-0.40 to 0.76)	
Thomson and Page 200745	2	3		0.77	-0.07 (-1.01 to 0.88)	
Zijdenbos Ingeborg et al 200	09 ²⁹ 6	2		5.61	-0.14 (-0.49 to 0.21)	
Subtotal			-	80.19	-0.08 (-0.18 to 0.01)	
Test for heterogeneity: τ^2 =0.0	00, P=0.83, I ² =	0%				
Pharmacological intervention	15					
Bellu et al 2008 ³⁰	4	2		0.67	-0.69 (-1.69 to 0.32)	
Calderon Moises et al 2007 ³	14 5	10		1.44	-0.33 (-1.02 to 0.35)	
Chalk et al 200732	8	5		0.82	-0.47 (-1.38 to 0.44)	
Guaiana et al 2007 ⁴¹	21	6		3.36	-0.05 (-0.50 to 0.40)	
Kirwan et al 2007 ³⁹	1	12			-0.14 (-0.91 to 0.62)	
Mason et al 2009 ²³	5	11		0.38	-1.49 (-2.83 to -0.15)	
Nicolaï et al 2009 ⁴⁶	8	1		1.75	-0.03 (-0.65 to 0.60)	
Tacklind et al 200943	6	5		6.54	0.00 (-0.32 to 0.32)	
Tanaka et al 2009 ⁴⁴	4	1		0.27	-0.22 (-1.82 to 1.37)	
Urguhart et al 2009 ²⁸	6	3		3.41	0.07 (-0.37 to 0.52)	
Subtotal		-		19.81	-0.11 (-0.29 to 0.08)	
Test for heterogeneity: $\tau^2=0.0$	00. P=0.57. ² =	0%			,	
rest for here of the state of t						
Overall test for heterogeneity	: τ ² =0.00, P=0.	87, l ² =0%	4	100.00	-0.09 (-0.17 to -0.01)	
		-2.	0 -1.5 -1.0 -0.5 0 0	.5 1.0 1.5		
21		Sin	gle centre trials a low larger effect s	Multicentre trials how larger effect		

Adjustment

Unadjusted

No of patients randomly assigned (continuous variable)

No of patients randomly assigned (binary variable)

Sequence generation

Allocation concealment

Blinding

Incomplete outcome data

Overall risk of bias

Funding

Difference in standardised mean differences (95% CI)

Discussion

- Possible explanations :
 - « Small study effect » but the results were consistent after adjustment for sample size
 - Publication bias:
 - Some studies suggested that single-center RCTs may be more prone to publication bias than multicenter trials

Sterne JA, et al JCE 2000 Sterne et al BMJ 1997

Discussion

- Possible explanations :
 - Lower methodological quality of single-center RCTs but the results were consistent after adjustment for risk of bias
 - Treatment effect really more important in single-center RCTs
 - Selection of a more homogeneous population
 - More standardized interventions in high skill units

- Studies are needed to explore the different possible mechanisms
- The single-center or multicenter status is usually well reported in RCTs and simple to assess, so it could be used as a proxy measure when interpreting the results of meta-analysis