

Smarter studies Global impact Better health

A new approach to evaluating loop inconsistency in network metaanalysis

Becky Turner¹, Tim Band², Tim Morris¹, David Fisher¹, James Carpenter¹, Julian Higgins³, Ian White¹

¹MRC Clinical Trials Unit at UCL, UK; ²UCL, UK; ³University of Bristol, UK

9 June 2022

Example: multiple treatments for localised prostate cancer

Traditional approach:

Carry out a series of standard meta-analyses to compare each pair of treatments.

Report multiple metaanalyses in a systematic review.

LD: low dose HD: high dose

Example: multiple treatments for localised prostate cancer

Network meta-analysis:

Collect data from eligible trials comparing any of these treatments.

Perform a combined analysis, comparing all treatments simultaneously.

LD: low dose H₃D: high dose

HD: high dose

Which treatment is most effective?

- How are treatments ranked with respect to effectiveness/safety?
- Which treatment is
 better: brachytherapy or
 cryotherapy? (no trial data
 available)
- Use of indirect as well as direct evidence

Indirect comparisons

- A vs. B comparison informed by direct evidence from trial data
- B vs. C comparison informed by indirect evidence, using A vs. B and A vs. C trial data
- A vs. C informed by both direct evidence and indirect evidence

Using direct and indirect evidence

- A vs. B comparison informed by direct evidence from trial data
- B vs. C comparison informed by indirect evidence, using A vs. B and A vs. C trial data
- A vs. C informed by both direct evidence and indirect evidence

Standard models rely on an assumption of consistency, meaning direct and indirect evidence agree for each comparison.

Why might consistency not hold?

Example reasons (for loop ACD)

- Patients in AC trials are systematically different from those in AD and CD trials (e.g. because they are ineligible for treatment D)
- Treatment A was differently implemented (e.g. different doses) when used in AC trials than when used in AD trials
- Trials of different treatment comparisons were carried out in different time periods or different settings (e.g. AC trials are recent, while CD trials are older)

Testing for inconsistency

- Local tests are performed within a single loop, e.g. nodesplitting approach (Dias et al., 2010)
- Global tests summarise evidence across whole network: design-by-treatment interactions model (Higgins et al., 2012)
- Existing global tests lack power, because degrees of freedom can be much larger than number of loops

Objectives of current research project

- Define a local inconsistency model that handles treatments symmetrically within a loop
- Extend model to a global model for inconsistency across the network
- Develop an algorithm for identifying a set of independent loops within a network (for inclusion in global model)

Count how many edges need to be removed in order that no loops remain in the network

Count how many edges need to be removed in order that no loops remain in the network

Count how many edges need to be removed in order that no loops remain in the network

Example 1: How many independent loops?

MRC Clinical Trials Unit at UCL

Example 1: How many independent loops?

There are seven different possible loops in the network: ABC, ABD, ACD, BCD, ABCD, ABDC, ACBD

But there are only three independent loops, for example ABC, ABD, ACD

Example 2: How many independent loops?

- In a network including only pairwise trials, the number of independent loops is *n-k+1* (for *n* contrasts, *k* treatments)
- Equivalent to counting the number of edges that need to be removed in order that no loops remain in the network
- But if the network includes multi-arm trials, counting the number of loops becomes more complicated

Consistency model

Trial design	B vs. A	C vs. A	C vs. B
AB	δ_{AB}	-	-
AC	-	δ_{AC}	-
BC	-	-	δ_{BC}
ABC	δ_{AB}	δ_{AC}	δ_{BC}

• Direct and indirect evidence are assumed to agree

Proposed inconsistency model

Trial design	A vs. B	B vs. C	C vs. A
AB	$\delta_{AB} + \omega/3$	-	-
AC	-	$\delta_{AC} + \omega/3$	-
BC	-	-	$\delta_{BC} + \omega/3$
ABC	δ_{AB}	δ_{AC}	δ_{BC}

- Handles treatments symmetrically by adding equal amounts of inconsistency to each contrast
- Previous models handle treatments asymmetrically,
 e.g. by adding ω term to A vs. B contrast only
- Reversing sign of inconsistency terms results in the same model

Global model: how many independent loops?

- In a network including only pairwise trials, number of independent loops is *n-k+1* (for *n* contrasts, *k* treatments)
- If multi-arm trials are included, different model parameterisations may produce different numbers of loops

Example network: AB and ABC trials

How many independent loops?

Example network: ABC, ACD and CDE trials

- Previous authors have chosen to maximise the number of loops (Lu and Ades 2006, van Valkenhoef et al. 2012)
- We choose to minimise the total number of loops
- This means between-trial variation is modelled as heterogeneity rather than inconsistency wherever possible
- Heterogeneity usually assumed equal across comparisons, so the model will include fewer parameters in total
- We have developed an algorithm to find an appropriate model parameterisation and identify independent loops

- Network meta-analysis compared four treatments:
 - No intervention (A)
 - Self-help (B)
 - Individual counselling (C)
 - Group counselling (D)
- Outcome measured was successful cessation of smoking at 6-12 months
- Direct evidence available on all six pairwise comparisons
- Two three-arm trials with designs ACD and BCD

Hasselblad et al., 1998

Smoking cessation network

- All comparisons in multiarm trials also appear in one or more pairwise trials
- Global model therefore includes a fixed number of independent loops
- Independent loops: 6-4+1=3
 (6 contrasts, 4 treatments)

Results: smoking cessation network

Loop split	Inconsistency parameter(s) (SE)	p-value
ABC	-0.34 (0.75)	0.65
ABD	0.06 (1.01)	0.96
ACD	-0.34 (1.03)	0.74
BCD	-1.44 (1.18)	0.22
ABCD	-1.16 (1.28)	0.37
ABDC	0.24 (0.91)	0.80
ACBD	0.76 (1.21)	0.53

Global model: smoking cessation network

- By applying our algorithm, we find that ABC, ABD and ACD are independent loops
- We fit a global inconsistency model to split these three loops simultaneously

Loops split	Inconsistency parameter(s) (SE)	p-value
ABC, ABD, ACD	-1.65 (1.37)	0.67
simultaneously	1.19 (1.42)	
	-1.67 (1.52)	

Multiple global models: smoking cessation network

Loops split	Inconsistency parameter(s) (SE)	p-value
ABC, ABD, ACD simultaneously	-1.65 (1.37) 1.19 (1.42) -1.67 (1.52)	0.67
ABD, ACD, ABC simultaneously	1.19 (1.42) -1.67 (1.51) -1.65 (1.37)	0.67
ABD, BCD, ABDC simultaneously	0.48 (1.56) -1.65 (1.37) 0.03 (1.45)	0.67

Graphical methods for visualising inconsistency

- We explored how to visualise the estimated inconsistencies within multiple loops in a network
- Propose plotting set of independent loops split in model
- Use colours to represent degree of significance of local inconsistency estimate
- Aim is to help meta-analysts identify which treatment loops to investigate for causes of inconsistency
- Because global model is not unique, plotting just one set of loops could lead to overinterpretation

Visualising inconsistency in smoking network

MRC Clinical Trials Unit at UCL

- Network meta-analysis compared six treatments:
 - Diuretic (A)
 - Placebo (B)
 - Beta blockers (C)
 - Calcium-channel blockers(D)
 - Angiotensin-converting-enzyme inhibitors (E)
 - Angiotensin-receptor blockers (F)
- Outcome measured was new cases of diabetes
- Four three-arm trials with designs ABC, ADE, CDE

Elliott et al., 2007

Diabetes prevention network

- Comparisons BC and DE are present in multi-arm trials but no pairwise trials
- There are multiple ways to parameterise the global model

Global model: diabetes prevention network

- By applying our algorithm, we find a parameterisation that minimises the number of loops in the model
- We find that ABD, ACD, ABE, ACE, ABF, ACF and ADF are independent loops

Loops split	Wald χ^2	Degrees of freedom	p-value
ABD, ACD, ABE, ACE, ABF, ACF, ADF simultaneously	6.49	7	0.48

Multiple global models: diabetes network

Loops split	Wald χ^2	Degrees of freedom	p-value
ABD, ACD, ABE, ACE, ABF, ACF, ADF simultaneously	6.49	7	0.48
ABD,ACD,ADF,BDF,CDF, AEBD,AECD simultaneously	6.49	7	0.48
ABF, ACF, ADF, BDF, CDF, AFBE, AFCE simultaneously	6.49	7	0.48

Visualising inconsistency in diabetes network

MANGA network

- Network meta-analysis compared 12 antidepressant drugs for treating adults with major depressive disorder: bupropion (A), citalopram (B), duloxetine (C), escitalopram (D), fluoxetine (E), fluvoxamine (F), milnacipran (G), mirtazapine (H), paroxetine (I), reboxetine (J), sertraline (K) and venlafaxine (L)
- Outcome for efficacy was response rate at 8 weeks
- Network includes two three-arm trials with design EIK

MANGA network

- All comparisons in multiarm trials also appear in one or more pairwise trials
- Global model therefore includes a fixed number of independent loops
- Independent loops:
 42-12+1=31 (42 contrasts,
 12 treatments)

Loops split simultaneously	p-value
ADE, ADI, ADK, ADL, BDE, BDEF, BDEH, BDI, BDEJ, BDK, BDL, CDE, CDI, DEI, DEFI, DEGI, DEHI, DEK, DEFK, DEGK, DEHK, DIK, DEJK, DEL, DEFL, DEHL, DIL, DEJL, DKL, EFG, EFH	0.51
ADCE, ADCI, ADK, ADL, BDCE, BDCEF, BDCEH, BDCI, BDCEJ, BDK, BDL, CDE, EFG, EFH, CDI, CEI, CEFI, CEGI, CEHI, CEKD, CEFKD, CEGKD, CEHKD, CIKD, CEJKD, CELD, CEFLD, CEHLD, CILD, CEJLD, DKL	0.51

 Test for global inconsistency gives identical results for any set of 31 independent loops

Visualising inconsistency in MANGA network

- We have not attempted to create visualisation plots for loop inconsistencies across the MANGA network
- The complexity of the network means that many loops overlap and cross each other
- Inconsistency visualisation plots would not help with interpretation of the results

Summary

- Our proposed models handle treatments symmetrically and locate inconsistency in loops (not nodes or contrasts)
- The global model is invariant to choice of independent loops and we have shown how to identify these
- We chose to assign as much variation as possible to heterogeneity rather than inconsistency
- Our preference was based on choosing a model with fewer parameters in total and a simpler interpretation
- Implementation less straightforward than some previous approaches, but we aim to improve this

Summary

- In complex networks including multiple loops, multiple different sets of loops produce the same global model
- Practical exploration of potential causes of inconsistency for any one set of loops therefore seems less meaningful
- Visualisation plots can help by showing which part of the network shows the strongest evidence for inconsistency
- In comparison with the existing global model (design-bytreatment interactions model), our model uses fewer degrees of freedom and should improve power
- In future work, we plan to evaluate this approach in a simulation study

References (examples)

Cipriani A et al. Comparative efficacy and acceptability of 12 newgeneration antidepressants: a multiple-treatments meta-analysis. *Lancet* 2009.

Elliott W and Meyer P. Incident diabetes in clinical trials of antihypertensive drugs: a network meta-analysis. *Lancet* 2007.

Hasselblad V et al. Meta-analysis of multi-treatment studies. *Medical Decision Making* 1998.

We would like to thank Andrea Cipriani for providing the MANGA data set.

References (methods)

Dias S et al. Checking consistency in mixed treatment comparison meta-analysis. *Stat Med* 2010.

Higgins JPT et al. Consistency and inconsistency in network metaanalysis: concepts and models for multi-arm studies. *Research Synthesis Methods* 2012.

Lu G, Ades AE. Assessing evidence inconsistency in mixed treatment comparisons. *JASA* 2006.

Lu G, Ades AE. Modeling between-trial variance structure in mixed treatment comparisons. *Biostatistics* 2009.

van Valkenhoef G et al. Algorithmic parameterization of mixed treatment comparisons. *Statistics and Computing* 2012.