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Key Points 

• Network meta-analysis is a technique for comparing three or more interventions 

simultaneously in a single analysis by combining both direct and indirect evidence across 
a network of studies.  

• Network meta-analysis allows for estimating the relative effects between any pairs of 

interventions in the network and usually yields more precise estimates than a single direct 
or indirect estimate. It also allows for the estimation of the ranking and hierarchy of 
interventions. 

• A valid network meta-analysis relies on the assumption that the different sets of studies 
included in the analysis are similar, on average, in all important factors that may affect the 
relative effects.  

• Incoherence (also called inconsistency) occurs when different sources of information (e.g. 
direct and indirect) for a relative effect disagree. 

• Grading the confidence in the evidence in a network meta-analysis begins by evaluating 

each risk of bias domain for each direct comparison. Then the domain-specified 
assessments are combined to determine the overall confidence in the evidence.  

11.1 Introduction 

11.1.1 Overviews versus intervention reviews 

Most Cochrane Reviews present pairwise comparisons between interventions for a specific 

condition and in a specific population or setting. However, it is usually the case that several, 

perhaps even numerous, competing interventions are available for some reviews. In these 
cases, people who need to decide between these interventions would benefit from a single 

review that includes all relevant interventions, and presents their comparative effectiveness 
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and potential for harm. Cochrane offers two different approaches that authors can use to 

produce such a review: an Overview or an Intervention Review that employs a network meta-
analysis.   

These two review types are quite different in their approaches and aims, and the Cochrane 
Comparing Multiple Interventions Methods Group has provided a decision chart (available 

from http://methods.cochrane.org/cmi/comparing-multiple-interventions-cochrane-reviews) 
designed to help authors and editors determine which format would best meet their needs. A 

key difference is that overviews present a synthesis of existing systematic reviews, while 

intervention reviews with a network meta-analysis provide a new synthesis of data from 
individual randomized trials. This leads to important distinctions in the methods employed, 

particularly for the search strategy and analysis plan, and also in the types of conclusions that 

can be drawn (Table 11.1.a). 

Overviews are designed to compile evidence from multiple systematic reviews on a set of 

closely related interventions, populations, outcomes, or conditions into one accessible and 
usable document. A central aim is to serve as a ‘friendly front end’ to the CDSR allowing the 

reader an oversight (and an exhaustive list) of Cochrane Intervention Reviews relevant to a 
specific decision.  

In contrast, an Intervention Review that includes a network meta-analysis undertakes a new 

set of statistical analyses using data from individual randomized trials in order to make 

inferences about the comparative effectiveness or harms of the interventions being 
compared. Inferences of this sort are rarely appropriate in Overviews.  

Detailed guidance for authors who choose one of these two methods is provided in two 
separate chapters in the Handbook. The remainder of this chapter deals with Intervention 

Reviews that include a network meta-analysis. Guidance for Overviews is presented in 
Chapter V.  

 

Table 11.1.a. Differences between an overview and an intervention review with network 
meta-analysis. 

Review type Overview 

Intervention Review with 

network meta-analysis 

Aim Collate multiple 

systematic reviews about 

the effectiveness of 

interventions for the same 

condition to extract and 

Re-analyse data from 

randomized trials of multiple 

interventions for the same 

condition to make inferences 

http://methods.cochrane.org/cmi/comparing-multiple-interventions-cochrane-reviews
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analyse their results 

across important 

outcomes. [Overviews 

may also be used for other 

purposes. These are 

described in Chapter V]  

about their comparative 

effectiveness or safety 

Focus of search strategy  Reviews of primary 

studies 

Primary studies  

Focus of statistical 

synthesis  

Review data  Study data  

Focus of data collection  Summary estimates based 

on existing meta-analyses 

from the included reviews 

Estimates from individual 

randomized trials  

 

11.1.2 Outline of the chapter 

This chapter aims to provide an overview of the concepts, assumptions and methods that 

relate to indirect comparisons and network meta-analyses. More specifically, Section 11.2 

first describes what an indirect comparison is and how it can be conducted. It then introduces 
the notion of transitivity as the core assumption underlying the validity of an indirect 

comparison. Examples are provided where this assumption is likely to be held or violated. An 

introduction to the ideas of network meta-analysis and the assumption of coherence follows. 
Section 11.3 provides guidance on the design of a Cochrane Intervention Review with multiple 

interventions and the appropriate definition of the research question with respect to selecting 

studies, outcomes and interventions. Section 11.4 briefly describes the available statistical 

methods for synthesizing the data, estimating the relative ranking and assessing incoherence 

in a network of interventions. Finally, the last two Sections 11.5 and 11.6 provide approaches 

for evaluating the confidence in the evidence and presenting the evidence base and the 

results form a network meta-analysis. Note that the present chapter only provides an 
introduction to the statistical aspects of network meta-analysis; authors will need a 
knowledgeable statistician to plan and execute these methods.   

11.2 Important concepts 

11.2.1 Direct and indirect comparisons 

At the heart of network meta-analysis methodology is the concept of indirect comparison. 

Indirect comparisons are necessary when there are no studies that have directly compared 
two interventions.  
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11.2.1.1 What is an indirect comparison? 

Indirect comparisons can be performed if studies in a systematic review provide information 

on three or more competing interventions. For example, suppose there are randomized trials 

directly comparing ‘dietitian’ (A) with ‘doctor’ (B) in providing dietary advice, and randomized 
trials comparing ‘dietitian’ (A) with ‘nurse’ (C). Suppose further that these randomized trials 

have been combined in standard, pairwise meta-analyses separately to derive direct 

estimates of AB and AC intervention effects, measured as mean difference (MD) in weight 
reduction (see Chapter 9, Sections 9.6.2, 9.6.3). We can derive an indirect estimate of the 

relative effect of B versus C by combining the two summary estimates A versus B and A versus 
C (see Figure 11.2.a).  

When four or more competing interventions are available, indirect estimates can be derived 

via multiple routes (Hughes 2010). The only requirement is that two interventions are 

‘connected’ and not necessarily via a single common comparator. An example of this 
situation is provided in Figure 11.2.b, where ‘doctor’ (B) and ‘pharmacist’ (D) do not have a 

common comparator, but we can compare them indirectly via the route ‘doctor’ (B) – 
‘dietitian’ (A) – ‘nurse’ (C) – ‘pharmacist (D). 

 

 

Figure 11.2.a. Example of deriving indirect estimate that compares the effectiveness of 

‘doctor’ (B) and ‘nurse’ (C) in providing dietary advice through a common comparator 
‘dietitian’ (A).  
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Figure 11.2.b. Example of deriving indirect estimate that compares the effectiveness of 
‘doctor’ (B) and ‘pharmacist’ (D) in providing dietary advice through a connected loop.  

 

11.2.1.2  Undertaking indirect comparisons 

One simple approach to undertaking an indirect comparison is to think of a comparison B 
versus C, representing the benefit of B over C, as the sum of the benefit of B over A and the 
benefit of A over C. Thus, for example, the indirect comparison describing any benefit of 

‘doctor’ over ‘nurse’ may be thought of as the benefit of ‘doctor’ over ‘dietitian’ plus the 

benefit of ‘dietitian’ over ‘nurse’ (these ‘benefits’ may be positive or negative; we do not 
intend to imply any particular superiority among these three types of people offering dietary 

advice). This is represented graphically in Figure 11.2.c. Mathematically, the sum can be 
written:  

𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 𝑀𝐷(𝐵𝑣𝑠𝐶) = 𝑑𝑖𝑟𝑒𝑐𝑡 𝑀𝐷(𝐵𝑣𝑠𝐴) + 𝑑𝑖𝑟𝑒𝑐𝑡 𝑀𝐷(𝐴𝑣𝑠𝐶) 

We usually write this in the form of subtraction: 

𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 𝑀𝐷(𝐵𝑣𝑠𝐶) = 𝑑𝑖𝑟𝑒𝑐𝑡 𝑀𝐷(𝐴𝑣𝑠𝐶) − 𝑑𝑖𝑟𝑒𝑐𝑡 𝑀𝐷(𝐴𝑣𝑠𝐵) 

such that the difference between the summary statistics of the intervention effect in the direct 

A versus B and A versus C meta-analyses provides an indirect estimate of the B versus C 

intervention effect. For the case where we have two direct comparisons (three interventions) 

the analysis can be conducted by performing subgroup analyses using standard meta-

analysis routines (including RevMan): studies addressing either of the two relevant direct 

comparisons (i.e. A versus B and A versus C) can be treated as two subgroups in the meta-
analysis. Subtracting the summary effect from each subgroup gives an estimate for the 
indirect comparison.  
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Most software will provide a P value for the statistical significance of the difference between 

the subgroups based on the estimated variance of the indirect relative effect (Bucher et al 
1997): 

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒[𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 𝑀𝐷(𝐵𝑣𝑠𝐶)]
= 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒[𝑑𝑖𝑟𝑒𝑐𝑡 𝑀𝐷(𝐴𝑣𝑠𝐶)] + 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒[𝑑𝑖𝑟𝑒𝑐𝑡 𝑀𝐷(𝐴𝑣𝑠𝐵)] 

where 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒[𝑑𝑖𝑟𝑒𝑐𝑡 𝑀𝐷(𝐴𝑣𝑠𝐶)] and 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒[𝑑𝑖𝑟𝑒𝑐𝑡 𝑀𝐷(𝐴𝑣𝑠𝐵)] are the variances of 
the respective direct estimates (from the two subgroup analyses).  

A 95% confidence interval for the indirect summary effect is constructed by the formula: 

[𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 𝑀𝐷(𝐵𝑣𝑠𝐶) ± 1.96 × √𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒[𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 𝑀𝐷(𝐵𝑣𝑠𝐶)]] 

This method uses the relative intervention effects from each group of randomized trials and 

therefore preserves within-trial randomization. Violation of within-trial randomization occurs 
by pooling single arms across the studies and then performing a direct comparison between 

them (i.e. treating the data as if they came from a single large randomized trial) (Li and 

Dickersin 2013). This approach should not be used. In general, any type of informal, non-
statistical indirect comparison or judgment that does not follow the principles presented in 

this chapter should be avoided because the uncertainty and biases around the comparisons 
are not properly considered (Glenny et al 2005, Nikolakopoulou et al 2014).  

 

 

Figure 11.2.c. Graphical representation of the indirect comparison ‘doctor’ (B) versus ‘nurse’ 
(C) via ‘dietitian’ (A).  

 

11.2.2 Transitivity 

11.2.2.1 What is transitivity 

Following the description in Section 11.2.1.2 it should be noted that indirect comparisons are 
observational evidence across randomized trials and may suffer the biases of observational 

studies, such as confounding (see Chapter 9, Section 9.6.6). The validity of an indirect 

comparison relies on the assumption that the different sets of randomized trials are similar, 
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on average, in all important factors other than the intervention comparison being made (Song 

et al 2003, Glenny et al 2005, Donegan et al 2010, Salanti 2012). Studies that compare different 

interventions may differ across a wide range of characteristics. Sometimes these 

characteristics are associated with the outcome of interest, in the sense that different levels 
of a particular characteristic may influence the effect of an intervention. If the A versus B and 

A versus C randomized trials differ with respect to such characteristics, also called ‘effect 
modifiers’, then it would not be appropriate to make an indirect comparison.  

The underlying assumption of indirect comparisons is that the common comparator 

intervention A allows a transitive relationship between the A versus B and A versus C effects. 
This transitive relationship can be written mathematically as:  

𝑒𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝐵 𝑣𝑒𝑟𝑠𝑢𝑠 𝐶 =  (𝑒𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝐴 𝑣𝑒𝑟𝑠𝑢𝑠 𝐵) – (𝑒𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝐴 𝑣𝑒𝑟𝑠𝑢𝑠 𝐶) 

In words, this means that we can compare interventions B and C via intervention A (Figure 
11.2.a).  

Transitivity requires that intervention A is similar when it appears in A versus B studies and A 
versus C studies with respect to characteristics that may affect the two relative effects (Salanti 

et al 2009). For example, in the dietary advice network the common comparator ‘dietitian’ 

might differ between randomized trials that compare dietitian with doctor (A versus B) or with 
nurse (A versus C) with respect to the frequency of sessions with the participants; if the 

participants visit the dietitian once a week in AB studies and once a month in AC studies, 

transitivity may be violated. Similarly, any other effect modifiers should not differ between AB 

and AC studies. 

Transitivity requires all competing interventions of a systematic review to be ‘jointly 
randomizable’. That is, we can imagine all interventions being compared simultaneously in a 

single multi-arm randomized trial. Another way of viewing this is that the ‘missing’ 

interventions (those not included in the identified studies) may be considered to be missing 
for reasons unrelated to their relative effects (Caldwell et al 2005, Salanti 2012). 

11.2.2.2 Assessing transitivity 

Clinical and methodological differences are inevitable between studies in a systematic 

review. Researchers undertaking indirect comparisons should assess whether such 

differences are sufficiently large to cause intransitivity. In practice, transitivity can be 

evaluated by comparing the distribution of effect modifiers across the different comparisons 
(Salanti 2012, Cipriani et al 2013, Jansen and Naci 2013). Imbalanced distributions would 

threaten the plausibility of the transitivity assumption and thus the validity of indirect 

comparison. Extended guidance on the considerations about the potential effect modifiers 
and their impact on the evidence base is provided in Chapter 9, Section 9.5). For example, we 

may believe that age is a potential effect modifier so that the effect of the interventions differs 

between younger and older populations. If the average age in A versus B randomized trials is 
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substantially older or younger than in A versus C randomized trials, transitivity may be 

implausible, and an indirect comparison B versus C may be invalid.  

Figure 11.2.d shows examples of valid and invalid indirect comparisons for the studies of the 
dietary advice example. The severity of the disease (i.e. obesity measured by the BMI score) is 

considered as the only potential effect modifier. Assume that we have AB and AC studies in 

moderate and then severe disease populations as shown in the first two rows of the figure. 
The two subgroups of randomized trials with moderate or severe populations are analysed 

separately and each subgroup gives a valid indirect estimate B versus C that pertains to the 

respective population. Then, imagine all AB randomized trials are conducted only in 
moderately obese populations and all AC randomized trials are conducted only in severely 

obese populations as seen in the last row of the figure. In this situation, the distribution of 

effect modifiers is different in the two direct comparisons and the indirect effect for the entire 

population is invalid (due to intransitivity). In real datasets, differences in effect modifiers are 
usually less extreme than this hypothetical scenario; for example, AB randomized trials may 

have 80% moderately obese population and 20% severely obese, and AC randomized trials 

may have 20% moderately obese and 80% severely obese population but intransitivity still 
would invalidate the indirect estimate B versus C.  
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Figure 11.2.d. Example of valid and invalid indirect comparisons when the severity of disease 

acts as effect modifier and its distribution differs across the two direct comparisons. The 

shaded boxes represent the treatment effect estimates from each source of evidence (striped 

box for A versus B and checked box for A versus C). In the first row, randomized trials of A 
versus B and of A versus C are all conducted in severely obese populations; in the second row 

randomized trials are all conducted in moderately obese populations. In both of these the 

indirect comparisons of the treatment effect estimates would be valid. In the last row, the A 
versus B and A versus C randomized trials are conducted in different populations. As severity 

is an effect modifier, the indirect comparison based on these would not be valid (Jansen et al 
2014). 

 

11.2.3 From indirect comparisons to network meta-analysis 

11.2.3.1 Combining direct and indirect evidence 

Often there is direct evidence for a specific comparison of interventions as well as a possibility 

of making an indirect comparison of the interventions via one or more common comparators. 
If the key assumption of transitivity is considered reasonable, direct and indirect estimates 

should be considered jointly. When both direct and indirect intervention effects are available 

for a particular comparison, these can be synthesized into a single relative effect. This 
summary effect is sometimes called a combined or mixed estimate of the intervention effect. 

We will use the former term in this chapter. A combined estimate can be computed as an 

inverse variance weighted average (see Chapter 9, Section 9.4.2) of the direct and indirect 

summary estimates. 

Since combined estimates incorporate indirect comparisons, they rely on the transitivity 

assumption. Violation of transitivity threatens the validity of both indirect and combined 
estimates. Of course, biased direct intervention effects for any of the comparisons also 
challenge the validity of a combined effect (Madan et al 2011).   

11.2.3.2 Coherence or consistency 

The key assumption of transitivity refers to potential clinical and methodological variation 

across the different comparisons. These differences may be reflected in the data in the form 
of disagreement in estimates between different sources of evidence. This is the statistical 

manifestation of transitivity and is typically called either coherence or consistency. We will 

use the former to distinguish the notion from inconsistency (or heterogeneity) within 
standard meta-analyses (e.g. as is measured using the I2 statistic; see Chapter 9, Section 

9.5.2). Coherence implies that the different sources of evidence (direct and indirect) agree 

with each other, and such a statistical assumption underlies any combined estimate (Ades 

2004, Lu and Ades 2006). The coherence assumption is expressed mathematically by the 
coherence equations, which state that the true direct and indirect intervention effects for a 
specific comparison are identical: 
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′𝑡𝑟𝑢𝑒′ 𝑀𝐷(𝐵𝑣𝑠𝐶) = ′𝑡𝑟𝑢𝑒′ 𝑀𝐷(𝐴𝑣𝑠𝐶) − ′𝑡𝑟𝑢𝑒′ 𝑀𝐷(𝐴𝑣𝑠𝐵) 

The available methods for testing this assumption are presented in Section 11.4.3 

11.2.3.3  Network meta-analysis 

Any group of studies that links three or more interventions via direct comparisons forms a 
network of interventions. In a network of interventions there can be multiple indirect 

intervention effects for each comparison. Then, the combined estimates for any pairwise 
comparisons in a network may incorporate direct or several indirect estimates, or both. 

Network meta-analysis combines direct and indirect estimates across a network of 

interventions. Synonymous terms, less often used, are mixed treatment comparison or 
multiple treatments meta-analysis. 

11.2.3.4  Network diagrams 

A network diagram is a graphical depiction of the structure of the network (Chaimani et al 
2013a). It consists of nodes representing the interventions in the network and lines showing 

the available direct comparisons between pairs of interventions. Distinct lines forming closed 

loops can be added in a network diagram to illustrate the presence of multi-arm studies. For 
example, a triangular loop would represent a three-arm study (see Figure 11.2.e). For large 

and complex networks this presentation of multi-arm studies may give complicated and 

unhelpful network diagrams. In this case it might be preferable to show multi-arm studies in a 
tabular format (see Section 11.6.1). Further discussion on network diagrams is available in 
Section 11.6.1. 

 

 

Figure 11.2.e. Example of network diagram with four competing interventions and 
information on the presence of multi-arm randomized trials.  
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11.2.3.5  Advantages of network meta-analysis 

A network meta-analysis exploits all available direct and indirect evidence. Empirical studies 

have suggested it yields more precise estimates of the intervention effects in comparison with 

a single direct or indirect estimate (Cooper et al 2011, Caldwell et al 2015). In addition, 
network meta-analysis can provide information for comparisons between pairs of 

interventions that have never been evaluated within individual randomized trials. The 

simultaneous comparison of all interventions of interest in the same analysis enables the 
estimation of their relative ranking for a given outcome. More extensive discussion on the 
relative ranking of interventions is provided in Section 11.4.2.3.  

11.2.3.6  Validity of network meta-analysis 

The validity of network meta-analysis relies on the fulfilment of underlying assumptions. Both 

transitivity and coherence should hold in every loop of evidence within the network (see 

Section 11.4.3). Considerations about heterogeneity within each direct comparison in the 
network should follow the existing recommendations for standard pairwise meta-analysis 
(see Chapter 9, Section 9.5.3).  

11.3 Planning a Cochrane Review to compare multiple interventions 

11.3.1 Expertise required in the review team 

Because of the complexity of network meta-analysis, it is important to establish a 

multidisciplinary review team that includes a statistician skilled in network meta-analysis 

methodology early and throughout. Close collaboration between the statistician and the 
content area expert is essential to ensure that the studies selected for a network meta-

analysis are similar except for the interventions being compared (see Section 11.2.2.1). 

Because basic meta-analysis software such as RevMan does not support network meta-

analysis, the statistician will have to rely on statistical software packages such as Stata, R, 
WinBUGS or OpenBUGS for analysis. 

All other skills required for an Intervention Review are also needed for a review with network 
meta-analysis. Review authors should follow guidance on organizing the review team and 
seeking input from stakeholders outlined in Chapter 2, Section 2.3.4. 

11.3.2 Building on existing reviews in the Cochrane context 

Cochrane usually avoids publishing reviews whose scope overlaps with the scope of one or 

more existing reviews. For a Cochrane Review that uses a network meta-analysis to compare 

multiple interventions, such overlap is often inevitable, as many of the relevant randomized 

trials may have already been included, assessed, or even meta-analysed in reviews with a 
narrower scope. Access to trial-level data that have already been extracted will facilitate the 

production of the new review, although using existing data requires further discussion with 
authors of those reviews and with editorial staff.  
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Network meta-analysis authors should refer to any overlapping systematic reviews in their 

review. This could be achieved by describing existing relevant systematic reviews in the ‘Why 

it is important to do this review?’ section and discussing the findings in the ‘Agreements and 
disagreements with other studies or reviews’ section. 

11.3.3 The importance of a well-defined research question 

Defining the research question of a systematic review that intends to compare multiple 

interventions should follow the general guidelines described in Chapter 5 (Section 5.1) and 
should be stated in the ‘Objectives’ of the review. In this section, we summarize and highlight 
key issues that are pertinent to systematic review with a network meta-analysis.  

Because network meta-analysis could be used to estimate the relative ranking of the included 

interventions (Salanti et al 2011, Chaimani et al 2013a), reviews that aim to rank the 

competing interventions should specify this in their ‘Objectives’ (Chaimani et al 2017). Review 

authors should consider obtaining an estimate of relative ranking as a secondary objective to 
supplement the relative effects. An extended discussion on the relative ranking of 
interventions is provided in Section 11.4.2.3.   

11.3.3.1 Defining the population and choosing the interventions 

Populations and interventions often need to be considered together given the potential for 

intransitivity (see Section 11.2.2). A driving principle is that any eligible participant should be 
eligible for randomization to any included intervention (Salanti 2012, Jansen and Naci 2013). 
Review authors should select their target population with this consideration in mind. 

Detailed description of the populations, interventions and outcomes of interest in a Cochrane 

Review should be given as ‘Criteria for considering studies for this review’. In the case of 

comparing multiple interventions, care is needed in the definition of the eligible 
interventions, as discussed in Chaimani et al (Chaimani et al 2017). For example, suppose a 

systematic review aims to compare four chemotherapy regimens for a specific cancer. 

Regimen (D) is appropriate for stage II patients exclusively and regimen (A) is appropriate for 

both stage I and stage II patients. The remaining two regimens (B) and (C) are appropriate for 

stage I patients exclusively. Now suppose A and D were compared in stage II patients, and A, B 

and C were compared in stage I patients (see Figure 11.3.a). The four interventions forming 

the network do not satisfy the transitivity assumption because regimen D cannot be given to 
the same patient population as regimens B and C. Thus, a four-arm randomized trial 

comparing all interventions (A, B, C and D) simultaneously is not a reasonable study to 
conduct. 

Interventions of direct interest, referred to as the decision set of interventions, are those 

options among which patients and health professionals would be choosing in practice with 
respect to the outcomes under investigation. The choice of competing interventions to 

include in the decision set should ensure that the transitivity assumption is likely to hold (see 
also Section 11.2.2.1) (Salanti 2012).  
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Figure 11.3.a. Example of a network comparing four chemotherapy regimens, where 
transitivity is violated due to incomparability between the interventions. 

 

11.3.3.2  Adding further interventions to supplement the analysis 

The ability of network meta-analysis to incorporate indirect evidence means that inclusion of 

interventions that are not of direct interest to the review authors might provide additional 

information in the network. For example, placebo is often included in network meta-analysis 

even when it is not a reasonable treatment option, because many studies have compared 

active interventions against placebo. In such cases, excluding placebo would result in 

ignoring a considerable amount of indirect evidence. Similar considerations apply to 
historical or legacy interventions. 

We use the term supplementary set to refer to interventions, such as placebo, that are 
included in the network meta-analysis for the purpose of improving inference among 

interventions in the decision set. The full set of interventions, the decision set plus the 

supplementary set, has been called in the literature the synthesis comparator set (Ades et al 
2013, Caldwell et al 2015).  

When review authors decide to include a supplementary set of interventions in a network they 

need to be cautious regarding the plausibility of the transitivity assumption. In general, 

broadening the network challenges the transitivity assumption. Thus, supplementary 

interventions should be added when their value outweighs the risk of violating the transitivity 

assumption. The addition of supplementary interventions in the analysis might be considered 
more valuable for sparse networks that include only a few randomized trials per comparison. 

In these networks the benefit of improving the precision of estimates by incorporating 

supplementary indirect evidence may be quite important. There is limited empirical evidence 
to inform the decision of ‘how far should we go in constructing the network evidence base’ 
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(König et al 2013, Caldwell et al 2015). Inevitably it will require some judgment and the 

robustness of decisions can be evaluated in the sensitivity analysis and discussed in depth in 
the review.   

11.3.3.3  Grouping variants of an intervention (defining ‘nodes’ in the network) 

The definition of nodes needs careful consideration in situations where variants of one or 

more interventions are expected to appear in the eligible randomized trials. The 
appropriateness of merging, for example, different doses of the same drug or different drugs 

within a class depends to a large extent on the research question. Lumping and splitting the 

variants of the competing interventions might be interesting to both review authors and 
evidence users; in such a case this should be stated clearly in the ‘Objectives’ of the review 

and the potential for intransitivity should be evaluated in every network. A decision on how 

the nodes of an expanded network could be merged is not always straightforward and 

researchers should act based on pre-defined criteria where possible. These criteria should be 
formed in such a way that maximizes similarity of the interventions within a node and 
minimizes similarity across nodes.  

The following example refers to a network that used two criteria to classify electronic 
interventions for smoking cessation into five categories:   

“To be able to draw generalizable conclusions on the different types of electronic 

interventions, we developed a categorization system that brought similar interventions 

together in a limited number of categories. We sought advice from experts in smoking 
cessation on the key dimensions that would influence the effectiveness of smoking cessation 

programmes. Through this process, two dimensions for evaluating interventions were 

identified. The first dimension was related to whether the intervention offered generic advice 
or tailored its feedback to information provided by the user in some way. The second 

dimension related to whether the intervention used a single channel or multiple channels. 

From these dimensions, we developed a system with five categories… , ranging from 
interventions that provide generic information through a single channel, e.g. a static Web site 

or mass e-mail (category e1) to complex interventions with multiple channels delivering 
tailored information, e.g. an interactive Web site plus an interactive forum (category e5).” 

(Madan et al 2014) p297 

To date there is no empirical evidence on whether more or less expanded networks are more 

prone to present important intransitivity or incoherence. Extended discussion on how 

different dosages can be modelled in network meta-analysis has been published in the 
literature (Giovane et al 2013, Owen et al 2015, Mawdsley et al 2016). 

11.3.3.4  Defining eligible comparisons of interventions (defining ‘lines’ in the network) 

Once the ‘nodes’ of the network have been specified, every study that meets the eligibility 
criteria and compares any pair of the eligible interventions should be included in the review. 
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The exclusion of specific direct comparisons without a rationale may introduce selection bias 

in the analysis and should be avoided.  

11.3.4 Selecting outcomes to examine 

Guidelines on the selection and definition of the outcomes of interest in a Cochrane Review 
are available in Chapter 2 (Section 2.4). In the context of a network meta-analysis, outcomes 

should be specified a priori regardless of the number of interventions the review intends to 

compare or the number of studies the review is able to include. Review authors should be 
aware that some characteristics may be effect modifiers for some outcomes but not for other 

outcomes. This implies that sometimes the potential for intransitivity should be examined 
separately for each outcome before undertaking the analyses. 

11.3.5 Study designs to include 

Extended discussion on choice of study designs for inclusion in a systematic review is 

available in Chapter 2 (Section 2.5). In brief, randomized designs are generally preferable to 

non-randomized designs to ensure an increased level of validity of the summary estimates. 
Sometimes, however, observational data from non-randomized studies may form a useful 

source of evidence. In general, combining randomized with observational studies in a 

network meta-analysis is not recommended. In the case of sparse networks (i.e. networks 

with a few studies but many nodes), observational data might be used to supplement the 
analysis; for example, to form prior knowledge or provide information for baseline 
characteristics (Schmitz et al 2013, Soares et al 2013).   

Randomized trials, when designed and conducted properly, provide the most valid evidence 

(see Chapter 8). Some design characteristics of randomized trials may affect the results of the 

network meta-analysis. A large meta-epidemiological study of networks of randomized trials 
found that the study variance was an important factor modifying effect estimates in network 

meta-analysis; studies with larger variance (usually smaller studies) tended to estimate larger 

treatment effects for the active or newer interventions when compared to inactive or older 
interventions than studies with smaller variance. This phenomenon is known as ‘small-study 

effects’. This finding should be considered alongside other meta-epidemiological findings for 
classical risk of bias items (Savović et al 2012, Chaimani et al 2013b). 

11.4 Synthesis of results 

Network meta-analysis can be performed using different approaches (Salanti et al 2008). Care 

is needed in defining the model parameters in a way that all relative effects can be estimated 

via the coherence equations. The comparisons that need to be estimated from the network 
meta-analysis model are often called basic comparisons (Lu and Ades 2006). The required 

number of basic comparisons equals the number of interventions minus one. For example, in 

a review of interventions for heavy menstrual bleeding (Figure 11.4.a) we may choose the 
following basic comparisons: ‘Hysterectomy versus first generation hysteroscopic 
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techniques’, ‘Mirena versus first generation hysteroscopic techniques’ and ‘second generation 

non-hysteroscopic techniques versus first generation hysteroscopic techniques’. All other 

(non-basic) comparisons in the network (e.g. ‘Mirena versus hysterectomy’, ‘Mirena versus 

second generation non-hysteroscopic techniques’, etc.) are called functional comparisons. 
The network meta-analysis model provides network estimates of the relative effects for all 

basic comparisons. We can obtain the estimates for the functional comparisons using the 
coherence equations (see Section 11.2.3.2). 

11.4.1 Synthesizing direct and indirect evidence using meta-regression 
Indirect comparisons were introduced in Section 11.2.1.2 in the context of subgroup analysis, 

where the subgroups are defined by the comparisons. Differences between subgroups of 

studies can also be investigated via meta-regression, without a full network meta-analysis 

(see Chapter 9, Section 9.6.4). When meta-regression is used to conduct this kind of analysis, 

each pair of interventions with a direct comparison is included in the analysis using 'dummy' 

variables (i.e. variables that do not have a true numerical value but are coded as 1 or 0 to 
indicate whether each study result comes from a study of that comparison or not).  

For example, in the dietary advice network containing only three intervention nodes (see 
Section 11.2.1.1, Figure 11.2.a) one dummy variable is required to indicate the comparison 

‘dietitian versus nurse’. This variable takes the value 1 for a study that involves that 

corresponding comparison and 0 otherwise, and is included as a covariate in the meta-
regression. In this way, the meta-regression model would have an intercept and a regression 

coefficient (slope). In this example the estimated intercept gives the meta-analytic direct 

summary effect for the comparison ‘dietitian versus doctor’ while the sum of the estimated 

regression coefficient and intercept gives the direct summary effect for the dietitian versus 
nurse’. Consequently, the estimated coefficient is the indirect summary effect for the 
comparison ‘doctor versus nurse’.  

Suppose now that in the dietary advice example studies that directly compare ‘doctor versus 

nurse’ are also available. A combined estimate for this comparison can be derived as a 

weighted average of direct and indirect estimates (see Section 11.2.3.1) or via meta-
regression (Lumley 2002). This approach requires adding a second dummy variable to 

indicate the comparison ‘dietitian versus doctor’. We do not require a third dummy variable 

because, under coherence, the comparison ‘doctor versus nurse’ can be expressed as the 
difference between the other two comparisons (see Section 11.2.3.2). This means that studies 

comparing ‘doctor versus nurse’ inform us about the difference between the other two 

comparisons and consequently we would assign values 1 and −1 to the dummies ‘dietitian 

versus doctor’ and ‘dietitian versus nurse’ respectively. Then, meta-regression should be 
fitted including both dummy variables without an intercept. The estimated regression 

coefficients that correspond to each dummy variable are the combined estimates for the 

respective comparisons. The difference between the two regression coefficients is the 
combined meta-analysis summary effect for ‘doctor versus nurse’.  



 

18 

 

In the absence of multi-arm randomized trials, this approach may be performed using 

standard meta-regression routines such as the ‘metareg’ available in the Stata statistical 
software (Harbord and Higgins 2008). Otherwise, other methods are more appropriate. 

11.4.2 Performing network meta-analysis 

An overview of methodological developments in network meta-analysis can be found in 

(Efthimiou et al 2016). The main technical requirement for all approaches to network meta-
analysis is that all treatments included in the analysis form a ‘connected’ network. 

A popular approach to conducting network meta-analysis is via hierarchical models using 

random effects, commonly implemented within a Bayesian framework (Sobieraj et al 2013, 
Nikolakopoulou et al 2014, Petropoulou et al 2016), Chapter 16, Section 16.8. A detailed 

description of hierarchical models for network meta-analysis can be found in (Lu and Ades 
2004, Salanti et al 2008, Dias et al 2018). 

Multivariate meta-analysis methods, initially developed to synthesize multiple outcomes 

jointly (Jackson et al 2011, Mavridis and Salanti 2013), offer an alternative approach to 

conducting network meta-analysis. A multivariate meta-analysis approach starts by selecting 
a specific list of basic comparisons (e.g. each intervention against a common reference 

intervention) and treats these as analogous to different outcomes. A study can report on one 

or more of the basic comparisons; for example, there are two comparisons in a three-arm 
randomized trial. For studies that do not target any of the basic comparisons (e.g. a study that 

does not include the common reference intervention), a technique known as data 

augmentation can be used to allow the appropriate parameterization (White et al 2012). The 
method is implemented in ‘network’ available for the Stata statistical package (White 2015). A 

detailed description of the concepts and the implementation of this approach is available in 
(White et al 2012).  

Methodology from electrical networks and graphic theory also can be used to fit network 

meta-analysis and is outlined in (Rucker 2012). This approach has been implemented in the R 
package ‘netmeta’ (Rucker and Schwarzer 2013).  

11.4.2.1 Illustrating example 

To illustrate the advantages of network meta-analysis, Figure 11.4.a presents a network of 
four interventions for heavy menstrual bleeding (Middleton et al 2010). Data are available for 

four out of six possible direct comparisons. Table 11.4.a presents the results from direct 

(pairwise) meta-analyses and a network meta-analysis using the meta-regression approach. 
Network meta-analysis provides evidence about the relative effectiveness for the 

comparisons ‘Hysterectomy versus second generation non-hysteroscopic techniques’ and 

‘Hysterectomy versus Mirena’, for which no randomized trial has assessed these two 
comparisons directly. Also, the network meta-analysis results are more precise (narrower 

confidence intervals) than the pairwise meta-analyses results for two comparisons (‘Mirena 

versus first generation hysteroscopic techniques’ and ‘Second generation non-hysteroscopic 
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techniques versus Mirena’). Note that precision is not gained for all comparisons; this is 

because for some comparisons (e.g. hysterectomy versus first generation hysteroscopic 

techniques), the network heterogeneity is larger compared with the heterogeneity within the 

direct comparison, and therefore some uncertainty is added in the network estimates (see 
Section 11.4.2.2).  

 

 

Figure 11.4.a. Network graph of four interventions for heavy menstrual bleeding (Middleton et 

al 2010). The size of the nodes is proportional to the number of participants assigned to the 

intervention and the thickness of the lines is proportional to the number of randomized trials 
that studied the respective direct comparison. 

 

Table 11.4.a. Relative effectiveness, measured as odds ratios of patient dissatisfaction at 12 

months of four interventions for heavy menstrual bleeding. Odds ratios lower than 1 favour 

the column-defining intervention for the network meta-analysis results (lower triangle) and 
the row-defining intervention for the pairwise meta-analysis results (upper triangle). 

Pairwise meta-analysis 

Hysterectomy - - 
0.38 

(0.22 to 0.65) 

0.45 

(0.24 to 0.82) 

Second generation 

non-hysteroscopic  

techniques 

1.35 

(0.45 to 4.08) 

0.82 

(0.60 to 1.12) 

0.43 

(0.18 to 1.06) 

0.96 

(0.48 to 1.91) 
Mirena 

2.84 

(0.51 to 15.87) 
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0.38 

(0.23 to 0.65) 

0.85 

(0.63 to 1.15) 

0.88 

(0.43 to 1.84) 

First generation 

hysteroscopic 

techniques 

Network meta-analysis 

 

11.4.2.2  Assumptions about heterogeneity 

Heterogeneity reflects the underlying differences between the randomized trials that directly 

compare the same pair of interventions (see Chapter 9, Section 9.5). In a pairwise meta-
analysis, the presence of important heterogeneity makes the interpretation of the summary 

effect challenging. Network estimates are a combination of the available direct estimates and 

therefore any comparison in the network is subject to the heterogeneity in all comparisons 
from which it is informed directly or indirectly.  

It is important to specify assumptions about heterogeneity in the network meta-analysis 

model. Heterogeneity can be specific to each comparison or assumed to be common across 
all pairwise comparisons. The idea is similar to a subgroup analysis: the different subgroups 

could have a common heterogeneity or different heterogeneities, the latter can be estimated 
accurately only if enough studies per subgroup are available. 

The assumption of a common heterogeneity across all pairwise comparisons is most 

frequently employed in network meta-analyses (Higgins and Whitehead 1996). This approach 
has two advantages compared with assuming comparison-specific heterogeneities. First, it 

borrows information from the other comparison and enables the estimation of heterogeneity 

that otherwise would not be estimable for comparisons with a few (one or two) studies. 
Likewise, for comparisons with many studies, heterogeneity is estimated more precisely 

because more data are incorporated, resulting usually in more precise estimates of relative 

effects. Second, assuming common heterogeneity makes model estimation computationally 
easier than assuming comparison-specific heterogeneity (Lu and Ades 2009). 

The choice of heterogeneity assumption should be based on clinical and methodological 

understanding of the data, and assessment of the plausibility of the assumption, in addition 
to statistical properties.  

11.4.2.3  Ranking interventions 

One hallmark feature of network meta-analysis is that it can estimate relative rankings of the 

competing interventions for a particular outcome. Ranking probability, the probability that 

an intervention is at a specific rank (first, second, etc.) when compared with the other 
interventions in the network, is frequently used. Ranking probabilities may vary for different 

outcomes. As for any estimated quantity, ranking probabilities are estimated with some 

variability. Therefore, inference based solely on the probability of being ranked as the best, 
without accounting for the variability, is misleading and should be avoided.  
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Ranking measures such as the mean ranks, median ranks, and the cumulative ranking 

probabilities summarize the estimated probabilities for all possible ranks and accounts for 

the variability in relative ranking. For further details on ranking measures refer to (Salanti et al 
2011, Chaimani et al 2013a, Tan et al 2014, Rücker and Schwarzer 2015).  

The estimated ranking probabilities for the heavy menstrual bleeding network (see Section 

11.4.2.2) are presented in Table 11.4.b. ‘Hysterectomy’ is the most effective intervention 
according to mean rank.  

 

Table 11.4.b. Ranking probabilities and mean ranks for intervention effectiveness in heavy 

menstrual bleeding. Lower mean rank values indicate that the interventions are associated 

with less mortality. 

 

Rank Hysterectomy 

Second generation 

non-hysteroscopic 

techniques Mirena 

First generation 

hysteroscopic 

techniques 

P
ro

b
a

b
il

it
ie

s 

1 96% 1% 4% 0% 

2 4% 46% 40% 9% 

3 0% 46% 19% 35% 

4 0% 7% 37% 56% 

Mean rank 1 3 3 4 

 

11.4.3 Disagreement between evidence sources (incoherence) 

11.4.3.1 What is incoherence? 

Incoherence refers to the violation of the coherence assumption in a network of interventions 

(see Section 11.2.3.2). Incoherence occurs when different sources of information for a 

particular relative effect are in disagreement (Song et al 2003, Lu and Ades 2006, Salanti 

2012). In much of the literature on network meta-analysis, the term inconsistency has been 
used, rather than incoherence. 

The amount of incoherence in a closed loop of evidence can be measured as the absolute 

difference between the direct and indirect summary estimates for any of the pairwise 

comparisons in the loop (Bucher et al 1997, Song et al 2011, Veroniki et al 2013). We refer to 
this method of detecting incoherence as the ‘loop-specific approach’. The obtained statistic is 
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usually called incoherence factor or inconsistency factor (IF). For example, in the dietary 

advice network the incoherence factor would be estimated as: 

𝐼𝐹 = |𝑑𝑖𝑟𝑒𝑐𝑡 𝑀𝐷(𝐵𝑣𝑠𝐶) − 𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 𝑀𝐷(𝐵𝑣𝑠𝐶)| 

IF measures the level of disagreement between the direct and indirect effect estimates.  

The standard error of the incoherence factor is obtained from 

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒[𝐼𝐹] = 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒[𝑑𝑖𝑟𝑒𝑐𝑡 𝑀𝐷(𝐵𝑣𝑠𝐶)]  + 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒[𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 𝑀𝐷(𝐵𝑣𝑠𝐶)] 

and can be used to construct a 95% confidence interval for the IF: 

[𝐼𝐹 ± 1.96 × 𝑆𝐸(𝐼𝐹)] 

Several approaches have been suggested for evaluating incoherence in a network of 

interventions with many loops (Donegan et al 2013, Veroniki et al 2013), broadly categorized 
as local and global approaches. Local approaches evaluate regions of network separately to 

detect possible ‘incoherence spots’, whereas global approaches evaluate coherence in the 
entire network.   

11.4.3.2  Approaches to evaluating local incoherence 

A local approach, that we term SIDE (Separating Indirect from Direct Evidence) evaluates the 
IF for every pairwise comparison in a network by contrasting a direct estimate (when 

available) with an indirect estimate; the latter being estimated from the entire network once 

the direct evidence has been removed. The method was first introduced by (Dias et al 2010) 
under the name ‘node-splitting’. The SIDE approach has been implemented in the ‘network’ 

macro for the Stata statistical package (White 2015) and the ‘netmeta’ command in R 

(Schwarzer et al 2015). For example, Table 11.4.c presents the incoherence results of a 

network that compares the effectiveness of four active interventions and placebo in 
preventing serious vascular events after transient ischaemic attack or stroke (Thijs et al 2008). 

Data are available for seven out of ten possible direct comparisons and none of them was 
found to be statistically significant in terms of incoherence.  

In the special case where direct and several independent indirect estimates are available, the 
‘composite Chi2 statistic’ can be used instead (Caldwell et al 2010).  

The loop-specific approach described in Section 11.4.3.1 can be extended to networks with 

many interventions by evaluating incoherence separately in each closed loop of evidence. 
The approach can be performed using the ‘ifplot’ macro available for the Stata statistical 

package (Chaimani and Salanti 2015). However, unlike the SIDE approach, this method does 

not incorporate the information from the entire network when estimating the indirect 
evidence.  
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Tests for incoherence have low power and therefore may fail to detect incoherence as 

statistically significant even when it is present (Song et al 2012, Veroniki et al 2014). This 

means that the absence of statistically significant incoherence is not evidence for the absence 

of incoherence. More preferably, review authors should consider the confidence interval of 
incoherence factors and decide whether the confidence interval includes values that are 

sufficiently large to suggest clinically important discrepancies between direct and indirect 

evidence. It should be noted that statistical incoherence can be assessed only for parts of the 
network with available direct evidence. Considerations upon the presence of incoherence are 
discussed in Section 11.4.3.4 

 

Table 11.4.c. Results based on the SIDE approach to evaluating local incoherence. P values 
less than 0.05 suggest statistically significant incoherence. 

Comparison Direct Indirect Incoherence factor 

 
Estimate 

Standard 

error Estimate 

Standard 

error Estimate 

Standard 

error P value 

A versus C -0.15 0.05 -0.21 0.10 0.07 0.12 0.56 

A versus D -0.45 0.07 -0.32 0.11 -0.14 0.13 0.28 

A versus E -0.26 0.14 -0.23 0.07 -0.03 0.16 0.85 

B versus C 0.18 0.11 0.13 0.08 0.05 0.14 0.70 

B versus E 0.07 0.07 0.12 0.12 -0.05 0.14 0.70 

C versus D -0.23 0.06 -0.35 0.12 0.12 0.13 0.38 

C versus E -0.06 0.05 -0.11 0.10 0.05 0.11 0.66 

 

11.4.3.3  Approaches to evaluating global incoherence 

Global incoherence in a network can be evaluated and detected via incoherence models. 

These models differ from the coherence models described in Section 11.4.2.1 by relaxing the 
coherence equations (see Section 11.2.3.2) and allowing intervention effects to vary when 

estimated directly and indirectly (Lu and Ades 2006). The models add additional terms, 

equivalent to the incoherence factors (IFs) defined in Section 11.4.3.1, to the coherence 

equations. For example, in the dietary advice network the coherence equation given in 
Section 11.2.3.2 would be modified to: 

′𝑡𝑟𝑢𝑒′𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 𝑀𝐷(𝐵𝑣𝑠𝐶) =′ 𝑡𝑟𝑢𝑒′𝑑𝑖𝑟𝑒𝑐𝑡 𝑀𝐷(𝐴𝑣𝑠𝐶)−′𝑡𝑟𝑢𝑒′𝑑𝑖𝑟𝑒𝑐𝑡 𝑀𝐷(𝐴𝑣𝑠𝐵) +  𝐼𝐹𝐴𝐵𝐶   
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The quantity IFABC measures incoherence in the evidence loop ‘dietitian-doctor-nurse’. 

Obviously, complex networks will have several IFs. For a network to be coherent, all IF need to 

be close to zero. This can be formally tested via a Chi2 statistic test which is available in Stata 

in the ‘network’ macro (White 2015). An extension of this model has been suggested where 
incoherence measures the disagreement when an effect size is measured in studies that 
involve different sets of interventions (termed ‘design incoherence’) (Higgins et al 2012).  

Measures like the Q-test and the I2 statistic, which are commonly used for the evaluation of 

heterogeneity in a pairwise meta-analysis (see Chapter 9, Section 9.5.2), have been developed 

recently for the assessment of heterogeneity and incoherence in network meta-analysis. For a 
description of these measures see (Krahn et al 2013, Rucker and Schwarzer 2013, Jackson et 
al 2014). These have been implemented in the package ‘netmeta’ in R (Schwarzer et al 2015). 

11.4.3.4  Forming conclusions about incoherence  

We suggest review authors use both local and global approaches and consider their results 

jointly before making inferences about incoherence. The approaches presented in Sections 
11.4.3.2 and 11.4.3.3 for evaluating incoherence have limitations. As for tests for statistical 

heterogeneity in a standard pairwise meta-analysis (see Chapter 9, Section 9.5.2), tests for 

detecting incoherence often lack power to detect incoherence when it is present, as shown in 

simulations and empirical studies (Song et al 2012, Veroniki et al 2014). Also, different 
assumptions and different methods in the estimation of heterogeneity may impact on the 

findings about incoherence. Extended discussion on this issue is available in (Veroniki et al 

2013, Veroniki et al 2014). Empirical evidence suggests that review authors sometimes assess 

the presence of incoherence, if at all, using inappropriate methods (Veroniki et al 2013, 
Nikolakopoulou et al 2014, Petropoulou et al 2016). 

Conclusions should be drawn not just from consideration of statistical significance but by 

interpreting the range of values included in confidence intervals of the incoherence factors. 

Researchers should remember that the absence of statistically significant incoherence does 
not ensure transitivity in the network, which should always be assessed before undertaking 
the analysis (see Section 11.2.2.2). 

Once incoherence is detected, possible explanations should be sought. Errors in data 

collection, broad eligibility criteria, and imbalanced distributions of effect modifiers may have 

introduced incoherence. Possible analytical strategies in the presence of incoherence are 

presented in (Salanti 2012, Jansen and Naci 2013).  

11.5 Evaluating confidence in the results of a network meta-analysis 

The GRADE approach is recommended for use in Cochrane Reviews to assess the confidence 

of the evidence for each pairwise comparison of interventions (see Chapter 12, Section 
12.2.1). The approach starts by assuming high confidence in the evidence for randomized 
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trials of a specific pairwise comparison and then downgrades the evidence for considerations 

of five issues: study limitations, indirectness, inconsistency, imprecision and publication bias.  

Study limitations include possible flaws in the design of the studies, such as lack of blinding or 
allocation sequence concealment. Indirectness refers to differences between the 

characteristics of the studies (i.e., populations, interventions, and outcomes) included in the 

systematic reviews and the characteristics of the target population to which the inference is 
made. Inconsistency considers the presence of important between-study variance (i.e. 

heterogeneity). Imprecision refers to the width of the confidence intervals of the summary 
statistic. Publication bias examines the likelihood of existing studies that remain unpublished.  

Rating the confidence in the evidence from a network of interventions is more challenging 

than pairwise meta-analysis (Dumville et al 2012). To date, two frameworks have been 
suggested in the literature to extend the GRADE system to indirect comparisons and network 

meta-analyses: Salanti and colleagues (Salanti et al 2014) and Puhan and colleagues(Puhan 

et al 2014). Section 11.5.1 describes the principles of each approach, noting similarities and 
differences. 

11.5.1 Available approaches for evaluating confidence in the evidence  

The two available approaches to evaluating confidence in evidence from a network meta-

analysis acknowledge that the confidence in each combined comparison depends on the 
confidence in the direct and indirect comparisons that contribute to it, and that the 

confidence in each indirect comparison in turn depends on the confidence in the pieces of 

direct evidence that contribute to it. Therefore, all GRADE assessments are built to some 
extent on applying GRADE ideas for direct evidence. The two approaches diverge in the way 
they combine the considerations when thinking about an indirect or combined comparison.  

More specifically, since indirect and combined comparisons are estimated by combining the 

information on two or more direct comparisons (See Sections 11.2 and 11.4), the confidence 

in each direct piece of evidence involved may be used to rate the confidence in the indirect 

evidence for this comparison. Then, they can be integrated to rate an indirect comparison 

following two possible ways which are illustrated in Table 11.5.a using the dietary advice 
example. 

At the time of writing, no formal comparison has been performed to evaluate the degree of 

agreement between these two methods. Thus, at this point we do not prescribe using one 

approach or the other. However, when indirect comparisons are built on existing pairwise 
meta-analyses, which have already been rated with respect to their confidence, it may be 

reasonable to follow the Puhan and colleagues approach. On the other hand, when the body 

of evidence is built from scratch, or when a large number of interventions are involved, it may 
be preferable to consider the Salanti and colleagues approach whose application is facilitated 
via the online tool CINeMA (Confidence in Network Meta-Analysis, http://cinema.ispm.ch/). 

http://cinema.ispm.ch/
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The framework by Salanti and colleagues  is driven by the ability to express each estimated 

intervention effect from a network meta-analysis as a weighted sum of all the available direct 

comparisons (see Section 11.4) (Lu et al 2011, König et al 2013, Krahn et al 2013). The weight is 

determined, under certain assumption, by the contribution matrix, which has been 
implemented in the ‘netweight’ macro (Chaimani and Salanti 2015) available for the Stata 

statistical package and programmed in CINeMA. The matrix contains the percentage of 

information attributable to each direct comparison and can be interpreted as the 
contributions of the direct comparisons. Then, the confidence in an indirect or combined 

comparison is estimated by combining the confidence assessment for the available direct 

comparisons with their contribution to the combined (or network) comparison. This approach 

is similar to the process of evaluating the likely impact of a high risk of bias study by looking 
at its weight in a pairwise meta-analysis to decide whether to downgrade or not in a standard 

GRADE assessment. 

For example, in the dietary advice network (Figure 11.2.a) suppose that the direct comparison 

‘dietitian versus doctor’ has been judged at low risk of bias and contributes 80% of the 

information in the indirect comparison ‘doctor versus nurse’, whereas the comparison 
‘dietitian versus nurse’ (with 20% contribution) has been judged at high risk of bias (step 1). In 

this situation, in step 2 it seems reasonable to assess the indirect comparison as having low or 

at least moderate risk of bias but not high. This approach might be preferable when there are 
indirect or mixed comparisons informed by many loops within a network, and for a specific 

comparison these loops lead to different risk of bias assessments. The contributions of the 

direct comparisons and the risk of bias assessments may be presented jointly in a bar graph 

with bars proportional to the contributions of direct comparisons and different colours 

representing the different judgments. The bar graph for the heavy menstrual bleeding 

example is available in Figure 11.5.a, which suggests that there are two comparisons (first 

generation hysteroscopic techniques versus Mirena and second generation non-
hysteroscopic techniques versus Mirena) for which a substantial amount of information 
comes from studies at high risk of bias. 

Regardless of whether a review contains a network meta-analysis or a simple indirect 

comparison, Puhan and colleagues propose to focus on so-called ‘most influential’ loops 

only. These are the connections between a pair of interventions of interest that involve 
exactly one common comparator. This implies that the assessment for the indirect 

comparison is dependent only on confidence in the two other direct comparisons in this loop. 

To illustrate, consider the dietary advice network described in Section 11.2 (Figure 11.2.a), 
where we are interested in confidence in the evidence for the indirect comparison ‘doctor 

versus nurse’. According to Puhan and colleagues, the lower confidence rating between the 

two direct comparisons ‘dietitian versus doctor’ and ‘dietitian versus nurse’ would be chosen 

to inform the confidence rating for the indirect comparison. If there are also studies directly 
comparing doctor versus nurse, the confidence in the combined comparison would be the 

higher rated source between the direct evidence and the indirect evidence. The main 

rationale for this is that, in general, the higher rated comparison is expected to be the more 
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precise (and thus the dominating) body of evidence. Also, in the absence of important 

incoherence, the lower rated evidence is only supportive of the higher rated evidence; thus it 

is not very likely to reduce the confidence in the estimated intervention effects. One 

disadvantage of this approach is that investigators need to identify the most influential loop; 
this loop might be relatively uninfluential when there are many loops in a network, which is 

often the case when there are many interventions. In large networks, many loops with 

comparable influence may exist and it is not clear how many of those equally influential loops 
should be considered under this approach. For further detail on this approach see (Puhan et 
al 2014).  

Since network meta-analysis produces estimates for several intervention effects, the 

confidence in the evidence should be assessed for each intervention effect that is reported in 

the results. In addition, network meta-analysis may also provide information on the relative 

ranking of interventions and any concerns about confidence in the evidence also pertain to 
this output. Consequently, confidence in the evidence should also be considered in 

interpreting the relative ranking results when these are reported. Salanti and colleagues 

addressed this based on the contributions of the direct comparisons to the entire network as 
well as on the use of measures and graphs that aim to assess the different GRADE domains in 
the network together (e.g. measures of global incoherence (see Section 11.4.3).  

The two approaches modify the standard GRADE domains to fit network meta-analysis to 

varying degrees. These modifications are briefly described in Box 11.5.1.a; more details and 
examples are available in the original articles (Puhan et al 2014, Salanti et al 2014). 
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Table 11.5.a. Steps to obtain the overall confidence ratings (across all GRADE domains) for every combined comparison of the 

dietary advice example. A ✓ or x indicates whether a particular step is needed in order to proceed to the next step.  

Direct 

comparisons GRADE domains 

Step 1 Step 2 Step 3 

Domain-specific 
ratings for direct 
comparisons 

Overall rating 
across domains 
for direct 
comparisons 

Domain-specific 
ratings for 
combined 
comparisons 

Overall rating 
across domains for 
combined 
comparisons 

Salanti 

et al 

Puhan 

et al 

Salanti 

et al 

Puhan 

et al 

Salanti 

et al 

Puhan 

et al 

Salanti 

et al 

Puhan 

et al 

Dietitian vs 
nurse 

Study limitations ✓ ✓ x ✓ ✓ x ✓ ✓ 

Indirectness ✓ ✓ ✓ x 

Inconsistency ✓ ✓ ✓ x 

Imprecision - - ✓ x 

Publication bias ✓ ✓ ✓ x 

Dietitian vs 
doctor 

Study limitations ✓ ✓ x ✓ ✓ x ✓ ✓ 

Indirectness ✓ ✓ ✓ x 

Inconsistency ✓ ✓ ✓ x 

Imprecision - - ✓ x 
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Publication bias ✓ ✓ ✓ x 

Nurse vs 
doctor 

Study limitations ✓ ✓ x ✓ ✓ x ✓ ✓ 

Indirectness ✓ ✓ ✓ x 

Inconsistency ✓ ✓ ✓ x 

Imprecision - - ✓ x 

Publication bias ✓ ✓ ✓ x 
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Figure 11.5.a. Bar graph illustrating the percentage of information for every comparison that 
comes from low (dark grey), moderate (light grey), or high (black) risk of bias studies with 

respect to both randomization and compliance to treatment for the heavy menstrual 

bleeding network (Middleton et al 2010). The risk of bias of the direct comparisons was 

defined based on Appendix 3 of the original paper. The intervention labels are A: first 
generation hysteroscopic techniques, B: hysterectomy, C: second generation non-
hysteroscopic techniques, D: Mirena. 

 

Box 11.5.1.a. Modifications to the five domains of the standard GRADE system to fit network 
meta-analysis. 

Study limitations (i.e. classical risk of bias items): Salanti and colleagues suggest a bar 

graph with bars proportional to the contributions of direct comparisons and different 

colours representing the different confidence ratings (e.g. green, yellow, red for low, 
moderate or high risk of bias) with respect to study limitations (Figure 11.5.a). The decision 

about downgrading or not is then formed by interpreting this graph. Such a graph can be 

used to rate the confidence of evidence for each combined comparison and for the relative 
ranking. 
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Indirectness:  The assessment of indirectness in the context of network meta-analysis 

should consider two components: the similarity of the studies in the analysis to the target 

question (PICO); and the similarity of the studies in the analysis to each other. The first 

addresses the extent to which the evidence at hand relates to the population, 
intervention(s), comparators and outcomes of interest and the second relates to the 

evaluation of the transitivity assumption. A common view of the two approaches is that 

they do not support the idea of downgrading indirect evidence by default. They suggest 
that indirectness should be considered in conjunction with the risk of intransitivity.  

Inconsistency: Salanti and colleagues propose to create a common domain to consider 

jointly both types of inconsistency that may occur: heterogeneity within direct comparisons 
and incoherence. More specifically, they evaluate separately the presence of the two types 

of variation and then consider them jointly to infer whether downgrading for inconsistency 

is appropriate or not. It is usual in network meta-analysis to assume a common 
heterogeneity variance. They propose the use of prediction intervals to facilitate the 

assessment of heterogeneity for each combined comparison. Prediction intervals are the 

intervals expected to include the true intervention effects in future studies (Higgins et al 
2009, Riley et al 2011) and they incorporate the extent of between-study variation; in the 

presence of important heterogeneity they are wide enough to include intervention effects 

with different implications for practice. The potential for incoherence for a particular 

comparison can be assessed using existing approaches for evaluating local and global 
incoherence (see Section 11.5). We may downgrade for one or two levels due to the 

presence of heterogeneity or incoherence, or both. The judgment for the relative ranking is 

based on the magnitude of the common heterogeneity as well as the use of global 
incoherence tests (see Section 11.4). 

Imprecision: Both approaches suggest that imprecision of the combined comparisons can 
be judged based on their 95% confidence intervals. Imprecision for relative treatment 

ranking is the variability in the relative order of the interventions. This is reflected by the 

overlap in the distributions of the ranking probabilities; i.e. when all or some of the 
interventions have similar probabilities of being at a particular rank.   

Publication bias: The potential for publication bias in a network meta-analysis can be 
difficult to judge. If a natural common comparator exists, a ‘comparison-adjusted funnel 

plot’ can be employed to identify possible small-study effects in a network meta-analysis 

(Chaimani and Salanti 2012, Chaimani et al 2013a). This is a modified funnel plot that 

allows putting together all the studies of the network irrespective of the interventions they 
compare. However, the primary considerations for both the combined comparisons and 

relative ranking should be non-statistical. Review authors should consider whether there 
might be unpublished studies for every possible pairwise comparison in the network. 
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11.6 Presenting network meta-analyses 

The PRISMA Extension Statement for Reporting of Systematic Reviews Incorporating Network 

Meta-analyses of Health Care Interventions should be considered when reporting the results 

from network meta-analysis (Hutton et al 2015). Key graphical and numerical summaries 
include the network plot (e.g. Figure 11.4.a), a league table of the relative effects between all 

treatments with associated uncertainty (e.g. Table 11.4.a), and measures of heterogeneity 
and incoherence. 

11.6.1 Presenting the evidence base of a network meta-analysis 

Network diagrams provide a convenient way to describe the structure of the network (see 

Section 11.2.3.4). They may be modified to incorporate information on study-level or 

comparison-level characteristics. For instance, the thickness of the lines might reflect the 

number of studies or patients included in each direct comparison (e.g. Figure 11.4.a), or the 

comparison-specific average of a potential effect modifier. Using the latter device, network 

diagrams can be considered as a first step for the evaluation of transitivity in a network. In the 
example of Figure 11.6.a the age of the participants has been considered as a potential effect 

modifier. The thickness of the line implies that the average age within comparisons A versus D 
and C versus D seems quite different to the other three direct comparisons.  

The inclusion of studies with design limitations in a network (e.g. lack of blinding, inadequate 

allocation sequence concealment) often threatens the validity of findings. The use of coloured 
lines in a network of interventions can reveal the presence of such studies in specific direct 

comparisons. Further discussion on issues related to confidence in the evidence is available in 
Section 11.5. 
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Figure 11.6.a. Example of network diagram with lines weighted according to the average age 

within each pairwise comparison. Thicker lines correspond to greater average age within the 
respective comparison. 

 

11.6.2 Tabular presentation of the network structure 

For networks including many competing interventions and multiple different study designs, 

network diagrams might be the most appropriate tool for presenting the data. An alternative 
way to present the structure of the network is to use a table, in which the columns represent 

the competing interventions and the rows represent the different study designs in terms of 

interventions being compared (Table 11.6.a) (Lu and Ades 2006). Additional information, such 

as the number of participants in each arm, may be presented in the non-empty cells. 
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Table 11.6.a. Example of table presenting a network that compares seven interventions and placebo for controlling exacerbation 
of episodes in chronic obstructive pulmonary disease (Baker et al 2009). 

No. of 

studies Placebo Fluticasone Budesonide Salmeterol Formoterol Tiotropium 

Fluticasone+ 

Salmeterol 

Budesonide+ 

Formoterol 

4 x x 
 

x 
  

x 
 

4 x x 
      

2 x 
 

x 
 

x 
  

x 

2 x 
  

x 
 

x 
  

2 x 
  

x 
  

x 
 

8 x 
  

x 
    

2 x 
   

x 
   

10 x 
    

x 
  

1 x 
     

x 
 

1 
   

x 
 

x 
  

1 
   

x 
  

x 
 

1 
    

x x 
  

1      x x  



 

35 

11.6.3 Presenting the flow of evidence in a network 

Another way to map the evidence in a network of interventions is to consider how much each 
of the included direct comparisons contributes to the final combined effect estimates. The 

percentage information that direct evidence contributes to each relative effect estimated in a 

network meta-analysis can be presented in the contribution matrix (see Section 11.4), and 

could help investigators understand the flow of information in the network (Chaimani et al 
2013a, Chaimani and Salanti 2015).  

Figure 11.6.b presents the contribution matrix for the example of the network of interventions 

for heavy menstrual bleeding (obtained from the ‘netweight’ macro in Stata). The indirect 

treatment effect ‘second generation non-hysteroscopic techniques’ versus ‘Hysterectomy’ (B 
versus C) can be estimated using information from the four direct relative treatment effects; 

these contribute information in different proportions depending on the precision of the direct 

treatment effects and the structure of the network. Evidence from the direct comparison of 

first generation hysteroscopic techniques versus hysterectomy (A versus B) has the largest 
contribution to the indirect comparisons hysterectomy versus second generation non-

hysteroscopic techniques (B versus C) (49.6%) and hysterectomy versus Mirena (B versus D) 
(38.5%), for both of which no direct evidence exists. 
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Figure 11.6.b. Contribution matrix for the network on interventions for heavy menstrual 

bleeding presented in Figure 11.4.a. Four direct comparisons in the network are presented in 

the columns, and their contributions to the combined treatment effect are presented in the 

rows. The entries of the matrix are the percentage weights attributed to each direct 
comparison. The intervention labels are A: first generation hysteroscopic techniques, B: 
hysterectomy, C: second generation non-hysteroscopic techniques, D: Mirena.  

 

11.6.4 Presentation of results 

Unlike pairwise meta-analysis, the results from network meta-analysis cannot be easily 
summarized in a single figure, such as a standard forest plot. Especially for networks with 

many competing interventions that involve many comparisons, presentation of findings in a 
concise and comprehensible way might be challenging. 

Summary statistics of the intervention effects for all pairs of interventions are the most 

important output from network meta-analysis. Results from a subset of comparisons is 

sometimes presented due to space limitations and the choice of the findings to be reported is 
based on the research question and the target audience (Tan et al 2013). In such cases, the 

use of additional figures and tables to present all results in detail is necessary. Additionally, 

review authors might wish to report the relative ranking of interventions (see Section 11.4.2.3) 
as a supplementary output, which provides a concise summary of the findings and might 

facilitate decision making. For this purpose, joint presentation of both relative effects and 

relative ranking is recommended (see Figure 11.6.c or Table 11.4.a of Section 11.4.2.1). 

In the presence of many competing interventions, the results across different outcomes (e.g. 

efficacy and acceptability) might be contradicting with respect to which interventions work 
best. To avoid drawing misleading conclusions, review authors may consider the 
simultaneous presentation of results for outcomes in these two categories.  

Interpretation of the findings from network meta-analysis should always be considered with 

the evidence characteristics: risk of bias in included studies, heterogeneity, incoherence, and 

selection bias. Reporting results with respect to the evaluation of incoherence and 

heterogeneity (such as I2 statistic for incoherence) is important for drawing meaningful 
conclusions. 

11.6.4.1 Presentation of intervention effects and ranking 

A table presenting direct, indirect, and network summary relative effects along with their 

confidence ratings is a helpful format (Puhan et al 2014). In addition, various graphical tools 

have been suggested for the presentation of results from network meta-analyses (Salanti et al 
2011, Chaimani et al 2013a, Tan et al 2014). Summary relative effects for pairwise 

comparisons with their confidence intervals can be presented in a forest plot. For example, 
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Figure 11.6.c shows the summary relative effects for each intervention versus a common 

reference intervention for the ‘heavy menstrual bleeding’ network. 

Ranking probabilities for all possible ranks may be presented by drawing probability lines, 
which are known as ‘rankograms’, and show the distribution of ranking probabilities for each 

intervention (Salanti et al 2011). The rankograms for the ‘heavy menstrual bleeding’ network 

example are shown in Figure 11.6.d. The graph suggests that ‘Hysterectomy’ has the highest 
probability of being the best intervention, ‘First generation hysteroscopic techniques’ have 

the highest probability of being worst followed by ‘Mirena’ and ‘Second generation non-
hysteroscopic techniques’ have equal chances of being second or third.  

The relative ranking for two (competing) outcomes can be presented jointly in a two-

dimensional scatterplot (Chaimani et al 2013a). An extended discussion on different ways to 
present jointly relative effects and relative ranking from network meta-analysis is available in 
(Tan et al 2013). 

 

 

Figure 11.6.c. Forest plot for effectiveness in heavy menstrual bleeding between four 

interventions. FGHT: first generation hysteroscopic techniques, SGNHT: second generation 
non-hysteroscopic techniques.  
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Figure 11.6.d. Ranking probabilities (rankograms) for the effectiveness of interventions in 

heavy menstrual bleeding. The horizontal axis shows the possible ranks and the vertical axis 
the ranking probabilities. Each line connects the estimated probabilities of being at a 
particular rank for every intervention.  

 

11.6.4.2 Presentation of heterogeneity and incoherence 

The level of heterogeneity in a network of interventions can be expressed via the magnitude 
of the between-study variance Tau2, typically assumed to be common in all comparisons in 

the network. A judgment on whether the estimated Tau2 suggests the presence of important 

heterogeneity depends on the clinical outcome and the type of interventions being 

compared. More extended discussion on the expected values of tau-squared specific to a 

certain clinical setting is available (Turner et al 2012, Nikolakopoulou et al 2014).  

Forest plots that present all the estimated incoherence factors in the network and their 

uncertainty may be employed for the presentation of local incoherence (Salanti et al 2009, 

Chaimani et al 2013a). The results from evaluating global incoherence can be summarized in 

the P value of the Chi2 statistic incoherence test and the I2 statistic for incoherence (see 

Chapter 9, Section 9.5.2).  

11.6.5  ‘Summary of findings’ tables 

The purpose of ‘Summary of findings’ tables in Cochrane Reviews is to provide concisely the 
key information in terms of available data, confidence in the evidence and intervention 

effects (see Chapter 11, Section 11.5). Providing such a table is more challenging in reviews 

that compare multiple interventions simultaneously, which very often involve a large number 

of comparisons between pairs of interventions. A general principle is that the comparison of 
multiple interventions is the main feature of a network meta-analysis, so is likely to drive the 

structure of the ‘Summary of findings’ table. This is in contrast to the ‘Summary of findings’ 

table for a pairwise comparison, whose main strength is to facilitate comparison of effects on 
different outcomes. Nevertheless, it remains important to be able to compare network meta-

analysis results across different outcomes. This provides presentational challenges that are 
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almost impossible to resolve in two dimensions. One potential solution is an interactive 

electronic display such that the user can choose whether to emphasize the comparisons 
across interventions or the comparisons across outcomes. 

For small networks of interventions (perhaps including up to five competing interventions) a 

separate ‘Summary of findings’ table might be produced for each main outcome. However, in 

the presence of many (more than five) competing interventions, researchers would typically 
need to select and report a reduced number of pairwise comparisons. Review authors should 

provide a clear rationale for the choice of the comparisons they report in the ‘Summary of 

findings’ tables. For example, they may consider including only pairwise comparisons that 
correspond to the decision set of interventions; that is the group of interventions of direct 

interest for drawing conclusions (see Section 11.3.3.1). The distinction between the decision 

set and the wider synthesis comparator set (all interventions included in the analysis) should 

be made in the protocol of the review. If the decision set is still too large, researchers may be 
able to select the comparisons for the ‘Summary of findings’ table based on the most 

important information for clinical practice. For example, reporting the comparisons between 

the three or four most effective interventions with the most commonly used intervention as a 
comparator. 

11.7 Concluding remarks 

Network meta-analysis is a method that can inform comparative effectiveness of multiple 
interventions, but care needs to be taken using this method because it is more statistically 

complex than a standard meta-analysis. In addition, as network meta-analyses generally ask 

broader research questions, they usually involve more studies at each step of systematic 
review, from screening to analysis, than standard meta-analysis. It is therefore important to 
anticipate the expertise, time, and resource required before embarking on one.  

A valid indirect comparison and network meta-analysis requires a coherent evidence base. 

When formulating the research question and deciding the eligibility criteria, populations and 

interventions in relation to the assumption of transitivity need to be considered. Network 
meta-analysis is only valid when studies comparing different sets of interventions are similar 

enough to be combined. When conducted properly, it provides more precise estimates of 

relative effect than a single direct or indirect estimate. Network meta-analysis can yield 

estimates between any pairs of interventions, including those that have never been compared 

directly against each other. Network meta-analysis also allows the estimation of the ranking 

and hierarchy of interventions. Much care should be taken when interpreting the results and 

drawing conclusions from network meta-analysis, especially in the presence of incoherence 
or other potential biases.  

11.8 Chapter information 

Authors: Anna Chaimani, Deborah M Caldwell, Tianjing Li, Julian PT Higgins, Georgia Salanti. 
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