An introduction to prospective meta-analysis (PMA)

Anna Lene Seidler, PhD MSc BSc Kylie Hunter, MPH BA(Hons)

NextGen Evidence Synthesis Team, Evidence Integration Group NHMRC Clinical Trials Centre University of Sydney, Australia

Disclosures and acknowledgements

- Co/Associate Convenors Cochrane PMA Methods Group
- Chair & Co-chair of TOPCHILD Collaboration
- Steering Group, EPOCH Collaboration
- Chair & Steering Group, iCOMP Collaboration
- Members, NeOProM Collaboration
- Research associates, ANZCTR **CANZCTR**

Cochrane Methods

Prospective Meta-analysis

individual participant data on **Co**rd Management at **P**reterm birth

Neonatal **O**xygenation **Pro**spective **M**eta-analysis Collaboration

slido

What is your professional background?

(i) Start presenting to display the poll results on this slide.

slido

Why did you join the webinar today?

(i) Start presenting to display the poll results on this slide.

Learning objectives

- Limitations of retrospective systematic reviews and meta-analyses
- Prospective meta-analyses
 - Definition
 - Main steps and differences to traditional systematic reviews and meta-analyses
 - Prospective meta-analyses and other 'Next Gen' methodologies

To help you pay attention, there will be a quiz!

^{@KylieEHunter} COVID 19 - New trials emerged at unprecedented speed

Study type Diagnostic test

Interventional (study)

Observational (study)

Unknown

@LeneSeidler

New trials registered each week

Source: Trials registered on primary WHO trial registries and ClinicalTrials.gov, accumulated on https://covid.inato.com/

The problem: Majority of trials underpowered to detect differences in important clinical outcomes

The target sample sizes we have...

Figure. Median target sample size for COVID trials by treatment

Source: Trials registered on primary WHO trial registries and ClinicalTrials.gov,

The sample sizes we need to detect differences in mortality...

	Death rate control group	Death rate intervention group	Absolute risk difference	Required sample size	Required sample size subgroup differences	
Scenario 1	25%	20%	5%	2,188	~10,000	
Scenario 2	30%	27%	3%	7,106	~30,000	

Table. Power calculations for reduction of absolute death for hospitalised COVID-19 patients 80% power at α =0.5 (Mortality rates source: PMID: 32171076)

accumulated on https://covid.inato.com/.

up to May 2020

But: many trials are addressing the same research question

Number of trials with treatment used in intervention

Figure. Number of trials per treatment category for currently registered COVID trials May 2020

Source: Trials registered on primary WHO trial registries and ClinicalTrials.gov, accumulated on https://covid.inato.com/,

The solution: Collaboration through Prospective Meta-Analysis!

Figure. Median recruitment target individual patients May 2020

Source: Trials registered on primary WHO trial registries and ClinicalTrials.gov, accumulated on <u>https://covid.inato.com/</u>,

Individual trials are underpowered

In combination, trials have excellent power to detect differences in mortality and other important outcomes

Figure. Total number of targeted patients per treatment across trials May 2020

Source: Trials registered on primary WHO trial registries and ClinicalTrials.gov, accumulated on <u>https://covid.inato.com/</u>,

Why can't we wait for each trial to publish their results to then combine them in a traditional systematic review and meta-analysis?

Systematic reviews: top of evidence hierarchy

Widely used to inform healthcare policy and practice

Several limitations and potential sources of bias

@LeneSeidler

@KylieEHunter

^{@KylieEHunter} Publication bias and selective outcome reporting

@LeneSeidler

Publication bias:

Retrospective inclusion of studies

- Knowledge of study results may influence hypothesis and selection criteria
- Meta-analyses on the same topic sometimes reach conflicting conclusions because of different eligibility criteria

JULIE WAS EXCITED WHEN HER DAUGHTER FAILED HISTORY. AT LAST A TEACHABLE MOMENT ON THE NEED FOR UNBIASED CONSIDERATION OF ALL THE EVIDENCE!

Example: Julie's daughter knew she had failed history when she decided to exclude 'minor subjects' from her evidence synthesis

Differences between studies

Inconsistencies across individual studies in design, outcome measurement and analyses

Different populations

Different outcomes

Different measures

Different time points

Different analyses

Synthesis difficult and sometimes impossible Clinical Trials Centre

Trials collecting core outcomes for COVID-19

Variation in what is being measured, and how.....

@LeneSeidler @KylieEHunter

Solution

Editorial

Next-generation systematic reviews: prospective meta-analysis, individual-level data, networks and umbrella reviews

John Ioannidis

"All primary original research may be designed, executed, and interpreted as prospective meta-analyses."

Ioannidis JP. Meta-research: The art of getting it wrong. Res Synth Methods 2010;1:169-84. doi:10.1002/jrsm.19

Prospective meta-analysis

@LeneSeidler

@KylieEHunter

Definition prospective meta-analysis (PMA)

Studies are identified as eligible for inclusion in the meta-analysis, and hypotheses and analysis strategies are specified, **before** the results of the studies or cohorts related to the PMA research question are known

Source: Seidler AL, Hunter KE, Cheyne S, Ghersi D, Berlin JA, Askie L. A guide to prospective meta-analysis. BMJ. 2019;367:I5342.

Have you ever conducted a prospective meta-analysis?

(i) Start presenting to display the poll results on this slide.

Clinical Trials Centre

Prospective meta-analysis: scoping review

- Number is increasing
- Used in different areas of health research

Definition, methodology, and reporting of previous PMAs vary greatly

A guide to prospective meta-analysis

Anna Lene Seidler,¹ Kylie E Hunter,¹ Saskia Cheyne,¹ Davina Ghersi,^{1,2} Jesse A Berlin,³ Lisa Askie¹

Developed step-by-step guidance based on
1) Scoping review of methodology papers
2) Scoping review of existing PMAs
3) Expert opinions from the PMA methods group
4) Experiences with previous PMA

Seidler AL, Hunter KE, Cheyne S, Ghersi D, Berlin JA, Askie L. A guide to prospective meta-analysis. BMJ. 2019;367:I5342.

Step 0: Deciding if PMA is the right methodology

PMA should be considered for

- High priority research questions
- Limited previous evidence
- New studies expected to emerge

PMA can be a catalyst for initiating a programme of priority research

Steps 1 & 2: research question, eligibility criteria, protocol

Eligibility criteria & protocol:

- Before any results are known → avoid selective reporting bias and outcome-based selection of studies
- PROSPERO registration

Prospective meta-analyses can include:

- Interventional or observational studies
- Individual participant data (IPD) or aggregate data
- For aggregate data: FAME (Tierney et al 2021)

PLOS MEDICINE

GUIDELINES AND GUIDANCE

A framework for prospective, adaptive meta-analysis (FAME) of aggregate data from randomised trials

Jayne F. Tierney 🖬, David J. Fisher, Claire L. Vale, Sarah Burdett, Larysa H. Rydzewska, Ewelina Rogozińska, Peter J. Godolphin, Ian R. White, Mahesh K. B. Parmar

advanced search

3

Citation

47

Share

Save

1,961

View

Step 3: Searching for studies

How to find planned and ongoing studies

- Clinical Trial Registries
- Searching for protocols & cohort descriptions
- Approaching relevant stakeholders
- Publicising PMA through protocol, websites, research forums, conferences...

^{@KylieEHunter} Searching for registration records: key recommendations

@LeneSeidler

- Search ClinicalTrials.gov & World Health Organization International Clinical Trials Registry Platform (WHO ICTRP) as a minimum (note different tools & rules)
- Avoid using search filters offered by registries, e.g. study type (interventional, observational)
- Test whether search strategy retrieves pre-identified eligible studies (if possible)

Hunter et al. 2021, manuscript in preparation

U.S. National Library of Medicine ClinicalTrials.gov Find Studies About Studies Submit Studies Resources	World Health Organization
Home > Advanced Search Advanced Search	International Clinical Trials Registry Platform Search Portal
Fill in any or all of the fields below. Click on the label to the left of each search field for more information or read the Help Search Help	Home Advanced Search List By ▶ Search Tips UTN ▶ ICTRP website ▶ REGTRAC Contact us I Search Search tips
Condition or disease: x Other terms: x	 Restrict to COVID-19 Search for <u>clinical trials in children</u> Without Synonyms
Study type: All Studies Study Results: All Studies	Phases are All All Phase 0 Phase 1

Prospective meta-analyses involve people!

What is your favourite aspect of collaboration?

(i) Start presenting to display the poll results on this slide.

PMAs allow for harmonisation common CORE outcome sets

- Same **CORE** outcomes, same instruments & time points
- Enables collection of rare adverse side effects (combined power)
- Harmonisation does not require exactly the same protocol

Ability to harmonise depends on stage at which studies are included

Once a collaboration is formed, collaboration members can work together to harmonise:

- Populations
- Interventions/ exposures
- Common core outcomes

Early Prevention of Obesity in Childhood (EPOCH) PMA

The Early Prevention of Obesity in Childhood (EPOCH) Collaboration: Lisa Askie, Louise Baur, Karen Campbell, Lynne Daniels, David Espinoza, Kylie Hesketh, Kylie Hunter, Anthea Magarey, Andrew Martin, Chris Rissel, Barry Taylor, Rachael Taylor, Li Ming Wen

Funding: Australian National Health & Medical Research Council, NZ Health Research Council, Meat & Livestock Association

- > The first prospective meta-analysis in very early childhood obesity prevention
- ▶ 4 trials with a total of 2,196 mother-children dyads included
- > All trials tested very early parent-focused interventions to prevent childhood obesity
- Early interventions led to a BMI z-score reduction of -0.12 standard deviations at 1.5-2 years

Harmonisation example: EPOCH PMA - early childhood obesity prevention

Inclusion in PMA strongly increased harmonisation of core outcome categories!

Outcome category	No. of trials (out of 4) included outcome category <mark>before</mark> PMA was planned	No. of trials (out of 4) included outcome category after PMA was planned
Child's BMI/ Anthropometric Measures	4	4
Child's Dietary Intake	4	4
Breastfeeding	3	4
Child's Feeding Behaviour	2	4
Child's TV/ Sedentary Behaviour	3	4
Child's Sleep	1	4
Child's Physical Activity	3	4
Parents' Diet	2	3
Parents' Physical Activity	2	4
Parents' BMI	2	4
Parenting Style	2	4

Waiting period...

Step 6: Evidence synthesis Step 7: Interpretation & reporting

Evidence synthesis & assessing certainty of evidence

- Individual participant data or aggregate data
- Harmonised outcomes and analyses
- → Often easier than for retrospective meta-analysis

Interpretation and reporting

- Reporting guidelines in development
- Involve robust discussions within collaboration

Congratulations – you have made it through all 7 steps!

(i) Start presenting to display the poll results on this slide.

Join the quiz!

(i) Start presenting to display the poll results on this slide.

PMA compared to multi-centre-studies

SYSTEMATIC SEARCH

• For planned and ongoing studies

EFFICIENT

• Minimisation research waste. Combining and adapting currently planned trials to answer additional research questions

FLEXIBLE

• Study-specific protocol variations and outcomes that are locally relevant

GENERALISABLE

• Higher external validity due to variation in individual study design

LESS BIASED

Reduced risk of publication/ selective outcome reporting bias

COLLABORATIVE

• Researchers working together instead of competing

HARMONIOUS

• Harmonisation of outcomes, interventions and populations possible

POWERFUL

• Core outcome sets & ability to include rare outcomes

Neonatal Oxygenation Prospective Meta-analysis (NeOProM) Collaboration

- Aim: to determine best range to target oxygen levels in preterm infants
- Large sample size needed, but too expensive to fund
- 5 trials formed NeOProM, individual funding contingent on contributing to PMA

Trial	Sample size
SUPPORT (USA)	1316
COT (Canada)	1201
BOOST NZ (NZ)	340
BOOST II UK (UK)	973
BOOST II (Australia)	1135
Total	4965

Death by 18-24 months corrected age

Lower oxygen saturatio		turation	Higher oxygen sa	turation		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% Cl
Vaucher 2012	140	633	118	648	27.9%	1.21 [0.98, 1.51]	7
Schmidt 2013	97	585	88	577	21.2%	1.09 [0.83, 1.42]	
BOOST NZ 2014	25	170	27	170	6.5%	0.93 [0.56, 1.53]	
BOOST-II UK 2016	122	484	98	483	23.5%	1.24 [0.98, 1.57]	
BOOST-II Australia 2016	100	561	87	562	20.8%	1.15 [0.89, 1.50]	↓ - ↓
Total (95% CI)		2433		2440	100.0%	1.16 [1.03, 1.31]	\bullet
Total events	484		418				
Heterogeneity: Chi ² = 1.51	1, df = 4 (P = 0.83); l ² :	= 0%				L	
Test for overall effect: Z = 3	2.50 (P = 0.01)					0.2	Favours lower target Favours higher target

JAMA | Original Investigation

Association Between Oxygen Saturation Targeting and Death or Disability in Extremely Preterm Infants in the Neonatal Oxygenation Prospective Meta-analysis Collaboration

Lisa M. Askie, PhD; Brian A. Darlow, MD; Neil Finer, MD; Barbara Schmidt, MD; Ben Stenson, MD; William Tarnow-Mordi, MBChB; Peter G. Davis, MD; Waldemar A. Carlo, MD; Peter Brocklehurst, MBChB; Lucy C. Davies, MSc; Abhik Das, PhD; Wade Rich, BSHS; Marie G. Gantz, PhD; Robin S. Roberts, MSc Robin K. Whyte, MB; Lorrie Costantini, BA; Christian Poets, MD; Elizabeth Asztalos, MD; Malcolm Battin, MD; Henry L. Halliday, MD; Neil Marlow, DM; Win Tin, MBBS; Andrew King, BA; Edmund Juszczak, MSc; Colin J. Morley, MD; Lex W. Doyle, MD; Val Gebski, MSc; Kylie E. Hunter, MPH; Robert J. Simes. MD: for the Neonatal Oxygenation Prospective Meta-analysis (NeOProM) Collaboration No trial alone found a significant difference in death – all CIs crossed 1

Cholesterol Treatment Trialists' (CTT) Collaboration

- 30 trials evaluating statins
- ~175,000 participants
- Statins produced a 13% reduction in relative risk of major vascular events and are safe
- Led to worldwide uptake of statins and prevention of millions of deaths

Name some advantages of PMA

(i) Start presenting to display the poll results on this slide.

(i) Start presenting to display the poll results on this slide.

New horizons for prospective meta-analyses

- Increased trial registration
 - 95% of trials registered before trial completion
 - ICMJE statement 2005
 - Ability to identify planned and ongoing trials
- Improved collaboration & data sharing abilities
 - New technologies
 - Journals and registries enforce data sharing

Tan AC, Jiang I, Askie L, Hunter K, Simes RJ, Seidler AL. Prevalence of trial registration varies by study characteristics and risk of bias. J Clin Epidemiol 2019;113:64-74. doi:10.1016/j.jclinepi.2019.05.009

Combining PMA with other (next generation) ^{@LeneSeidler} ^{@KylieEHunter} systematic review methodology: IPD-MA

Individual participant data (IPD) PMA

- Row-by-row, individual participant data
- IPD 'gold standard' of meta-analysis: Allow additional analyses, in particular subgroup analyses
- IPD and PMA are both **collaborative** approaches: involve forming a collaboration between eligible studies

		Patient characteristics at trial entry					Maternal outcomes						Infant outcomes				
	PatientID	GArand	TreatGp	RandDBP	ChronicHT	PrevSGA	MaxSBP	MaxDBP	Prot	TrialistsPE	Delivery	APH	SGA	BirthGA	BW	Sex	SCU
ľ	10007932	28	2	60	1	0	145	100	1	1	0	0	1	40	2135	2	0
	10007933	11	1	80	0	1	140	90	0	0	4	0	0	41	3700	1	1
	10007934	20	2	70	0	0	140	88	0	0	2	0	0	41	3250	2	0

Combining PMA with other (next generation) systematic review methodology

- Nested PMAs
 - Combining retrospective with prospective evidence
- Living systematic reviews for PMAs
 - Systematically adding newly identified planned and ongoing studies to a PMA until research question is answered
- Network PMA? PMA of prognostic models?

Design priority programs of research as prospective meta-analyses

@LeneSeidler

@KylieEHunter

Cochrane's role in embracing PMA and other ^{@KylieEHunter} NextGen approaches

Cochrane's future: innovation and agility with NextGen Methods? Cochrane and the methods community need to work together:

facilitate appraisal and uptake of novel methods

Why COVID-19 is a prime example for the need for PMA

- No previous direct evidence
- Unpredictable case numbers within one centre/ country
- Urgency to collect the same outcomes using the same measures (including rare adverse side effects of treatments)
- Urgency to combine data rapidly

Collaboration instead of competition to overcome this global pandemic

Landscape of COVID-19 trials in Australia How well did researchers listen to calls for collaboration in Australia?

Findings

- Impressive research scale up
- Only 21% of COVID-19 trials plan to share data upon completion
- Small sample sizes: Median (IQR) = 150 (33-395)
- Lack of collection of common core outcomes \rightarrow precludes evidence synthesis

Research design no sufficiently strategic or collaborative Taxpayer-funded research waste?

Coordinated efforts required to address COVID-19

Little gain as millions spent on virus studies

Liam Mannix Science reporter

Prospective meta-analyses and COVID-19

Journal List > Elsevier Public Health Emergency Collection > PMC7237904

Elsevier Public Health Emergency Collection

Public Health Emergency COVID-19 Initiative

<u>Trends Pharmacol Sci</u>. 2020 May 20 doi: <u>10.1016/j.tips.2020.05.002</u> [Epub ahead of print] PMCID: PMC7237904 PMID: <u>32471655</u>

Overwhelming COVID-19 Clinical Trials: Call for Prospective Meta-Analyses

Zhongren Ma,¹ Jiaye Liu,² and Qiuwei Pan^{1,2,*}

► Author information ► Article notes ► Copyright and License information Disclaimer

Trends in Pharmacological Sciences

Elsevier Public Health Em

PMA improving treatment of COVID-19

Research

JAMA | Original Investigation | CARING FOR THE CRITICALLY ILL PATIENT

Association Between Administration of Systemic Corticosteroids and Mortality Among Critically III Patients With COVID-19

A Meta-analysis The WHO Rapid Evidence Appraisal for COVID-19 Thera The WHO Rapid Evidence Appraisal for COVID-19 Thera or placebo, was associated with lower 28-day all-cause mortality.

- Rapid aggregate data PMA
- PMA collaboration management:
 - Trial registry search
 - Weekly calls to harmonise studies
 - Trials shared summary outcome data for pre-specified outcome & subgroup analyses
- Article published online <2 months after final data collection!

Take home messages

PMA reduce research waste, and are adaptive, efficient and collaborative

- Questions to ask yourself when starting a new study:
 - Is anyone else doing this? How can we collaborate?
- The beauty of collaboration: More expertise and statistical power = more influential research

Acknowledgement

Angela Webster, Jesse Berlin, Davina Ghersi, Kylie Hunter, Anna Lene Seidler, Saskia Cheyne, Lisa Askie (left to right, top to bottom)

For more information:

Thank you. Questions?

lene.seidler@sydney.edu.au
kylie.hunter@sydney.edu.au
@LeneSeidler
@KylieEHunter
@CochranePMA

Seidler AL, Hunter KE, Cheyne S, Ghersi D, Berlin JA, Askie L. A guide to prospective metaanalysis. BMJ. 2019;367:I5342.

Key resources

- Seidler AL, Hunter KE, Cheyne S, Ghersi D, Berlin JA, Askie L. A guide to prospective meta-analysis. *BMJ*. 2019;367:I5342.
- Seidler AL, Aberoumand M, Williams JG, Tan A, Hunter KE and Webster A. The landscape of COVID-19 trials in Australia. *Med J Aust*, 2021; 215: 58-61.e1.
- Askie LM, Espinoza D, Martin A, Daniels LA, Mihrshahi S, Taylor R, Wen LM, Campbell K, Hesketh KD, Rissel C, Taylor B, Magarey A, Seidler AL, Hunter KE, Baur LA. Interventions commenced by early infancy to prevent childhood obesity - the EPOCH Collaboration: an individual participant data prospective meta-analysis of four randomised controlled trials. *Pediatr Obes*. 2020:e12618.
- Thomas J, Askie LM, Berlin JA, Elliott JH, Ghersi D, Simmonds M, Takwoingi Y, Tierney JF, Higgins HPT. Chapter 22: Prospective approaches to accumulating evidence. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane Handbook for Systematic Reviews of Interventions version 6.1 (updated September 2020). Cochrane, 2020.
- Seidler AL, Hunter KE, Espinoza D, Mihrshahi S, Askie LM, on behalf of the EPOCH Collaboration: Quantifying the advantages of conducting a prospective meta-analysis (PMA): a case study of early childhood obesity prevention. *Trials* 2021, 22(1):78.
- Seidler AL, Hunter KE, Cheyne S, Berlin JA, Ghersi D, Askie LM. Prospective meta-analyses and Cochrane's role in embracing next-generation methodologies. *Cochrane Database of Systematic Reviews* 2020, Issue 3. Art. No.: ED000145.
- Askie L, Darlow, BA, Finer N, Schmidt B, Stenson B, Tarnow-Mordi W, Davis PG, Carlo WA, Brocklehurst P, Davies LC, Das A, Rich W, Gantz MG, Roberts RS, Whyte RK, Costantini L, Poets C, Asztalos E, Battin M, Halliday HL, Marlow N, Tin W, King A, Juszczak E, Morley CJ, Doyle LW, Gebski V, Hunter KE, Simes RJ, for the Neonatal Oxygenation Prospective Meta-analysis (NeOProM) Collaboration. Association Between Oxygen Saturation Targeting and Death or Disability in Extremely Preterm Infants in the Neonatal Oxygenation Prospective Meta-analysis Collaboration. JAMA 2018;319(21):2190-201.

