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Outline of Webinar

• Introduction to joint modelling methodology

• Aggregate Data Meta-Analysis (AD-MA) of joint data

• Individual Participant Data Meta-Analysis (IPD-MA) of joint data
• Illustrative example
• Two stage IPD-MA of joint data
• One stage IPD-MA of joint data

• Conclusions
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Introduction to joint 
modelling methodology
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Longitudinal Data
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• Data measured repeatedly over time

• Examples 
• Weekly blood pressure measurements
• Repeated biomarker measurements
• Results of repeatedly performed test

• Multiple measurements per individual
• Measurements within individuals more 

similar than measurements across 
individuals

• Commonly modelled using (generalised) 
linear mixed effects models



Meta Analyses of Longitudinal Data
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• Aggregate Data Meta-Analysis (AD-MA) of longitudinal data has issues:
• Commonly, separate MA performed at each time point of interest – not advised as 

correlation ignored
• Different times reported across studies – a form of publication bias

• Individual Participant Data Meta-Analysis (IPD-MA) of longitudinal data is more 
flexible
• Hierarchical (generalised) linear mixed effects models can be performed in standard 

software
• Allows proper modelling of correlation structures and trends over time

• Key References
• IPD-MA of longitudinal data: Jones et al 2007, Gurrin and Turkovic 2012
• AD-MA of longitudinal data: Ishak et al 2007, Maas et al 2004 , Peters and Mengersen 2008



Time-to-event Data
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• Time until some event occurs

• Not all individuals will experience the 
event
• Some will drop out for reasons 

unrelated to the event
• Some will reach end of study without 

experiencing the event

• These individuals are censored
• Still provide information – that event 

has not occurred up to this point



Meta-analyses of Time-to-event Data
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• Aggregate Data Meta-Analysis (AD-MA) of time-to-event data
• Care must be taken to ensure methods in each study are appropriate e.g. take into 

account censoring
• Again, potential issues with data not being reported at all time points

• Individual Participant Data Meta-Analysis (IPD-MA) of time-to-event data
• Often recommended to ensure correct modelling of the complex data
• Commonly extensions to standard proportional hazards models proposed in 

literature are used

• Key references
• IPD-MA: Tudur Smith 2005, Crowther et al 2014, Crowther et al 2012, Katsahian et al 2008, Michels et al 2005, 

Rondeau et al 2008, Thompson et al 2010
• AD-MA: Parmar et al 1998, Tudur Smith et al 2001, Tierney et al 2007, Williamson et al 2002, Duchateau et al 

2000, Arends et al 2008, Bennett et al 2013



Joint Data
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• In some circumstances data will contain both longitudinal and time-to-event 
information – this is termed joint longitudinal and time-to-event data, or joint data. 

• Joint modelling techniques might be employed when:
• A longitudinal study is complicated by outcome related dropout
• A time-to-event study involves time varying covariates
• The longitudinal and time-to-event outcomes are both of interest, as well as the 

relationship between them

• When you have potentially related longitudinal and time-to-event data, it is important 
to model and investigate the relationship between them
• Modelling longitudinal and time-to-event outcomes separately when they are 

related could lead to biases



Joint Model
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• First proposed in 1997 by Wulfsohn and Tsiatis, but many papers since then have 
expanded methods to a range of areas (multivariate models, competing risks, cure rate…)

• Joint models consist three main components 
• Longitudinal sub-model
• Time-to-event sub-model
• Association / linking structure

• They simultaneously model both the longitudinal and time-to-event outcomes, rather 
than performing a two stage analysis (modelling of longitudinal, followed by modelling of 
time-to-event)

• Key references: Rizopoulos et al 2012, Elashoff et al 2017, Davidian et al 2004, Gould et al 2015, Ibrahim et al 2010, 
Tsiatis and Davidian 2004



Joint Model – basic structure
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Longitudinal
Sub-model

Time-to-event 
sub-model

Association 
Structure



Joint Model – algebraic notation
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Longitudinal

𝒀𝒊𝒋 = 𝑿𝑳𝜷𝑳 + 𝒁𝒊𝒋
𝟐 𝒃𝒊

𝟐 + 𝜖𝑖𝑗
𝒀𝒊𝒋 = 𝑾𝟏𝒊(𝒕) + 𝜖ij

Time-to-event
𝜆𝑖 𝑡 = 𝜆0 exp 𝑿𝑺𝜷𝑺 +𝑊2𝑖(𝑡)

Association 
Structure

𝑊2𝑖 𝑡 = 𝑓 𝑊1𝑖(𝑡)



Association structures
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Structure Notation

Random proportional 𝛼𝑖𝑛𝑑 𝑍𝑖
2
𝑏𝑖

2

Current value 𝛼𝑐(𝑊1𝑖 𝑡 )

Slope 𝛼𝑠
𝑑

𝑑𝑡
𝑊1𝑖(𝑡)

Weighted cumulative 𝛼𝑤𝑐𝑢𝑚 න
0

𝑡

𝜛 𝑡 − 𝑠 +𝑊1𝑖(𝑠)𝑑𝑠

Interaction 𝛼𝑐 𝑊1𝑖(𝑡) + 𝛼𝑖𝑛𝑡(𝑥 ∗ 𝑊1𝑖(𝑡))

Lagged 𝛼𝑙𝑎𝑔(𝑊1𝑖(max(𝑡 − 𝑠, 0)))



Association structures
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Structure Interpretation

Random proportional
Difference between individual and population average 
longitudinal outcome has effect on risk of event

Current value
Current value of longitudinal marker has effect on risk of 
event

Slope
Rate of change of longitudinal marker has effect on risk of 
event

Weighted cumulative History of longitudinal marker has an effect on risk of event

Interaction Longitudinal has different effect across groups on risk of event

Lagged Lagged effect of longitudinal on risk of an event



Joint Model – How common are they?
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Fig. from Sudell et al 2016

• In 2016 a review was conducted to assess current 
use of joint models applied to medical datasets

• Only applied papers, not those developing 
methodology were included

• Clear trend over time of increasing number of joint 
analyses, in a range of areas (Cancer, HIV, 
transplant studies, Cognitive decline,…)



AD-MA of joint data
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• How feasible is it to perform AD-MA of joint data?

• Review by Sudell et al (2016) assessed reporting of joint analyses in 65 studies 
that applied joint models to medical datasets

• Assessed whether information currently reported in applied joint modelling 
papers was sufficient to extract necessary information to conduct separate 
meta-analyses for each parameter of interest
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Aggregate Data Meta-Analysis (AD-MA)
of Joint Data



Aggregate Data Meta-Analysis (AD-MA)
of Joint Data
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Longitudinal 

MA

Time-to-

event MA

Association 

MA

MA possible given reported information (%)

All identified studies (N=65) 44 (67.7) 45 (69.2) 50 (76.9)

Studies using joint models to account for dropout 

(N=22)
18 (81.8) 14 (63.6) 15 (68.2)

Studies using joint models to include time varying 

covariate in time-to-event sub-model (N=4)
2 (50.0) 3 (75.0) 3 (75.0)

The reason for joint model use appeared linked to reporting of joint models



• Potential issues with reporting of joint models in literature might effect AD-MA 
of joint data
• Potential Reporting Bias
• Reporting appeared linked to reason for joint modelling use

• Differences in models used (longitudinal sub-model, time-to-event sub-model, 
association structure could make it difficult to pool results

• Recommendation to seek IPD if performing a meta-analysis of joint data
• Standardisation of models across included studies
• Proper modelling of effects over time
• Proper modelling of complex data
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Aggregate Data Meta-Analysis (AD-MA)
of Joint Data



IPD-MA of joint data
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Illustrative example – subset of INDANA data
• IPD from multiple studies investigating the effect of “no treatment” versus “any 

treatment” for hypertensive patients

• Longitudinal outcome systolic blood pressure (SBP) measured at baseline, 6 months, 
then annually thereafter to maximum of 7 years.  Measurement patterns varied 
between studies

• Time-to-event outcome time to death

• Evidence of a changepoint in the data at 6 month, so exp −3 ∗ 𝑡𝑖𝑚𝑒 term included in 
the model

• Example is only illustrative – in a real analysis further covariates known to be important 
for hypertension should be considered (Smoking status, age,….)
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Preliminary Steps
• There are a range of graphs which are useful to produce when performing a IPD-MA of 

joint data before analysing the data

• These graphs should be produced regardless of the IPD-MA approach (one-stage, two-
stage)

• These graphs give an initial assessment of modelling approaches in each sub-model (e.g. 
is the longitudinal trajectory linear or non-linear?) and can show evidence of the 
relationship between the longitudinal and time-to-event components

• Plots should be made of both the longitudinal trajectory and the time-to-event outcome.  
• Time-to-event plots are the same as for separate time-to-event analyses
• Longitudinal plots show some additional useful components, which we will now 

discuss
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Preliminary Steps – plots of longitudinal trajectory
• Plot of the longitudinal outcome 𝑌𝑘𝑖 by longitudinal 

time 𝑡𝑘𝑖𝑗 (termed the trajectory) panelled by 

whether the individual experienced the event 
should be produced for each study within the MA

• Example for COOPE – the mean trajectories for 
those censored and those experiencing an event 
show an initial drop in SBP. 

• However it appears that those censored remain 
steady at a higher SBP than those experiencing the 
event.  

• Examine alternative graph, adjusted by survival 
time (next slide)

22



Preliminary Steps – plots of longitudinal trajectory
• Now longitudinal outcomes 𝑌𝑘𝑖 for individuals 𝑖

within study 𝑘 are plotted against 𝑡𝑘𝑖𝑗 − 𝑇𝑘𝑖 i.e. 

against longitudinal time adjusted by the 
individual’s survival time

• The mean longitudinal trajectory for those 
censored drops shortly before time zero (before 
the survival time).  However, the mean SBP 
trajectory for those experiencing the event 
remains higher

• Evidence of a relationship between longitudinal 
outcome and the event of interest – motivation 
for use of a joint model
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Two stage IPD-MA of 
joint data
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Two Stage Individual Participant Data Meta-Analysis 
(IPD-MA) of Joint Data
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Process

• For the data from each study 𝑘 in 1,… , 𝐾 where 𝐾 is the total number of 
studies in the meta-analysis, fit a joint longitudinal and time-to-event 
model

• Extract parameters of interest from the study specific joint model fits, for 
example treatment effect parameters and/or association parameters.  
Also extract measure of variability (standard error) for each parameter of 
interest

• Pool the extracted study specific information using standard meta-
analytic techniques



Two Stage Individual Participant Data Meta-Analysis 
(IPD-MA) of Joint Data
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Two Stage IPD-MA of Joint Data – First Stage
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Longitudinal
𝒀𝒌𝒊𝒋 = 𝛽𝐿0𝑘 + 𝛽𝐿1𝑘𝑡𝑘𝑖𝑗 + 𝛽𝐿2𝑘𝑡𝑟𝑡𝑘𝑖

+𝛽𝐿3𝑘 exp −3 ∗ 𝑡𝑘𝑖𝑗

+𝑏𝑘𝑖0
2 + 𝑏𝑘𝑖1

2 𝑡𝑘𝑖𝑗 + 𝜖𝑘𝑖𝑗
𝒀𝒌𝒊𝒋 = 𝑾𝟏𝒌𝒊(𝒕) + 𝝐𝒌𝒊𝒋

Time-to-event
𝜆𝑘𝑖 𝑇𝑘𝑖 = 𝜆0𝑘 exp 𝛽𝑆1𝑘𝑡𝑟𝑡𝑘𝑖 +𝑊2𝑘𝑖(𝑇𝑘𝑖)

Association 
Structure

𝑊2𝑘𝑖 𝑡

= 𝛼𝑘
2

𝑏𝑘𝑖0
2
+ 𝑏𝑘𝑖1

2
𝑡

For example: For 𝑘 in 1,… , 𝐾, using the INDANA data fit the following joint model to the data from 
study k, and extract estimates and standard errors for the highlighted parameters of interest 

Note: exp −3 ∗ 𝑡𝑘𝑖𝑗 term 

included to model initial 
drop in longitudinal 
trajectory



Two Stage IPD-MA of Joint Data – Second Stage
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Example continued:  
• Once estimates and standard errors for the parameters of interest have been 

extracted (here the longitudinal treatment effect 𝛽𝐿2, the time-to-event treatment 

effect 𝛽𝑆1 and the association parameter 𝛼 2 ), pool parameters using standard meta-
analytic techniques.  

• For example, an inverse variance approach:

ො𝛼 2 =
σ𝑘=1
𝐾 𝑤𝑘 ො𝛼𝑘

2

σ𝑘=1
𝐾 𝑤𝑘

Where 𝑤𝑘 = ൗ1 𝑣𝑎𝑟 ො𝛼𝑘
2 for the fixed effects approach, and 𝑤𝑘 = ൗ1 𝑣𝑎𝑟 ො𝛼𝑘

2 + 𝜏2 for the 

random effects approach (DerSimonian and Laird 1986), where 𝜏2 represents the 
between study heterogeneity



Two Stage IPD-MA of Joint Data – Second Stage
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Analysis from Sudell et al 2017



Two Stage IPD-MA of Joint Data – Second Stage
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Analysis from Sudell et al 2017



Two Stage IPD-MA of Joint Data – Second Stage
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Analysis from Sudell et al 2017



Two Stage IPD-MA of Joint Data – Considerations
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What if  different association structures were used in different studies?

If one study used the current value association structure:

𝑊2𝑘𝑖 𝑡 = 𝛼𝑐𝑘 𝛽𝐿0 + 𝛽𝐿1𝑡 + 𝛽𝐿2𝑡𝑟𝑡𝑘𝑖 + 𝛽𝐿3 exp −3 ∗ 𝑡 + 𝑏𝑘𝑖0
2
+ 𝑏𝑘𝑖1

2
𝑡

In this study, the association parameter would represent the effect of the currently recorded 
longitudinal outcome on the risk of an event

If another study used the random proportional association structure

𝑊2𝑘𝑖 𝑡 = 𝛼𝑘
2 𝑏𝑘𝑖0

2 + 𝑏𝑘𝑖1
2 𝑡

The association parameter from this study represents the effect of the difference between 
the recorded value and the population average value in longitudinal outcome for a 
particular individual on the risk of an event
Care should be taken to pool only parameters whose interpretation is comparable



Two Stage IPD-MA of Joint Data – Considerations
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Same problem occurs if terms involved in the association structure differ between studies.

If one study employed an individual level random intercept and slope:

𝑊2𝑘𝑖 𝑡 = 𝛼𝑘
2

𝑏𝑘𝑖0
2
+ 𝑏𝑘𝑖1

2
𝑡

Whilst another study employed only an individual level random intercept

𝑊2𝑘𝑖 𝑡 = 𝛼𝑘
2 𝑏𝑘𝑖0

2

The association parameter again would represent different things - the first represents the 
effect of the sum of the individual specific random intercept and slope on the risk of the 
event.  The second represents only the effect of the individual specific random intercept on 
the risk of an event

Care should be taken to pool only parameters whose interpretation is comparable 



Two Stage IPD-MA of Joint Data – Recommendations
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• Evaluate each study separately using e.g. graphical techniques

• Assess the most appropriate joint modelling structure for each study

• If parameters have different interpretations between studies (for example different 
association parameter interpretations), pool only parameters whose interpretations 
are comparable



Two Stage IPD-MA of Joint Data – Recommendations
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One-stage IPD-MA of 
joint data

36



One Stage Individual Participant Data Meta-Analysis 
(IPD-MA) of Joint Data
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Process

• Hold the data from each study 𝑘 in 1,… ,𝐾 where 𝐾 is the total number 
of studies in the meta-analysis in a single large meta-dataset

• Fit a single large joint model to the meta-dataset

• Ensure clustering of data within studies is accounted for e.g. using
• Study level random effects
• Fixed interactions between study membership and other covariates in 

either sub-model
• Baseline hazard stratified by study
• Do not ignore clustering



One Stage Individual Participant Data Meta-Analysis 
(IPD-MA) of Joint Data
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One Stage IPD-MA of Joint Data – Accounting for Clustering
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Longitudinal
𝒀𝒌𝒊𝒋 = 𝛽𝐿0 + 𝛽𝐿1𝑡𝑘𝑖𝑗 + 𝛽𝐿2𝑡𝑟𝑡𝑘𝑖

+𝛽𝐿1 exp −3 ∗ 𝑡𝑘𝑖𝑗

+𝑏𝑘𝑖0
2 + 𝑏𝑘𝑖1

2 𝑡𝑘𝑖𝑗

+𝑏𝑘0
3 + 𝑏𝑘1

3 𝑡𝑟𝑡𝑘𝑖 + 𝜖𝑘𝑖𝑗

Time-to-event
𝜆𝑘𝑖 𝑇𝑘𝑖 = 𝜆0 exp 𝛽𝑆1𝑡𝑟𝑡𝑘𝑖 +𝑊2𝑘𝑖(𝑇𝑘𝑖)

Association Structure
𝑊2𝑘𝑖 𝑡

= 𝛼 2 𝑏𝑘𝑖0
2 + 𝑏𝑘𝑖1

2 𝑡

+ 𝛼 3 𝑏𝑘0
3 + 𝑏𝑘1

3 𝑡𝑟𝑡𝑖

Option 1: Accounting for clustering using study level random effects

Note: exp −3 ∗ 𝑡𝑖𝑗 term 

included to model initial 
drop in longitudinal 
trajectory



One Stage IPD-MA of Joint Data – Accounting for Clustering
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Option 1: Accounting for clustering using study level random effects

Benefits of approach Drawbacks of approach

Estimates a distribution for differences 
between studies

Random effects and their distribution 
poorly estimated if number of included 
studies is small

Ability to predict results for future 
studies

Study specific estimates not 
automatically produced

Doesn’t become cumbersome as 
number of included studies increases



One Stage IPD-MA of Joint Data – Accounting for Clustering
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Longitudinal
𝒀𝒌𝒊𝒋 = 𝛽𝐿0 + 𝛽𝐿1𝑡𝑘𝑖𝑗 + 𝛽𝐿2𝑡𝑟𝑡𝑘𝑖

+𝛽𝐿3 exp −3 ∗ 𝑡𝑘𝑖𝑗
+𝛽𝐿4𝑠𝑡𝑢𝑑𝑦𝑘𝑖
+𝛽𝐿5𝑠𝑡𝑢𝑑𝑦𝑘𝑖 ∗ 𝑡𝑟𝑡𝑘𝑖
+𝑏𝑘𝑖0

2
+ 𝑏𝑘𝑖1

2
𝑡𝑘𝑖𝑗 + 𝜖𝑘𝑖𝑗

Time-to-event
𝜆𝑘𝑖 𝑇𝑘𝑖 = 𝜆0 exp 𝛽𝑆1𝑡𝑟𝑡𝑘𝑖 + 𝛽𝑆2𝑠𝑡𝑢𝑑𝑦𝑘𝑖 + 𝛽𝑆3𝑠𝑡𝑢𝑑𝑦𝑘𝑖 ∗ 𝑡𝑟𝑡𝑘𝑖 +𝑊2𝑘𝑖(𝑇𝑘𝑖)

Association Structure
𝑊2𝑘𝑖 𝑡

= 𝛼 2 𝑏𝑘𝑖0
2
+ 𝑏𝑘𝑖1

2
𝑡

Option 2: Accounting for clustering using fixed interactions with study membership

Note: exp −3 ∗ 𝑡𝑖𝑗
term included to 
model initial drop in 
longitudinal 
trajectory



One Stage IPD-MA of Joint Data – Accounting for Clustering
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Benefits of approach Drawbacks of approach

Exact estimation of study specific effects Approach becomes cumbersome as 
number of included studies increases

Separate out study effects in each sub-
model

Limited ability to predict results for 
future studies

Suitable if few studies included in meta-
analysis

No distribution of studies produced

No difference in association structure 
across included studies

Option 2: Accounting for clustering using fixed interactions with study membership



One Stage IPD-MA of Joint Data – Accounting for Clustering
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Longitudinal
𝒀𝒌𝒊𝒋 = 𝛽𝐿0 + 𝛽𝐿1𝑡𝑘𝑖𝑗 + 𝛽𝐿2𝑡𝑟𝑡𝑘𝑖

+𝛽𝐿3 exp −3 ∗ 𝑡𝑘𝑖𝑗
+𝛽𝐿4𝑠𝑡𝑢𝑑𝑦𝑘𝑖

+𝑏𝑘𝑖0
2
+ 𝑏𝑘𝑖1

2
𝑡𝑘𝑖𝑗

+𝑏𝑘1
3 𝑡𝑟𝑡𝑘𝑖 + 𝜖𝑘𝑖𝑗

Time-to-event
𝜆𝑘𝑖 𝑇𝑘𝑖 = 𝜆0𝑘(𝑡) exp 𝛽𝑆1𝑡𝑟𝑡𝑘𝑖 +𝑊2𝑘𝑖(𝑇𝑘𝑖)

Association Structure
𝑊2𝑘𝑖 𝑡

= 𝛼 2 𝑏𝑘𝑖0
2 + 𝑏𝑘𝑖1

2 𝑡

+ 𝛼 3 𝑏𝑘1
3 𝑡𝑟𝑡𝑘𝑖

Option 3: Accounting for clustering using baseline hazard stratified by studies, and fixed study 
membership terms 

Note: exp −3 ∗ 𝑡𝑖𝑗 term 

included to model initial drop in 
longitudinal trajectory



One Stage IPD-MA of Joint Data – Accounting for Clustering
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Benefits of approach Drawbacks of approach

Fast to fit – baseline hazard involves only 
events from one study

Using fixed effects becomes cumbersome
as number of included studies increases

Limited applicability to future studies

Stratified baseline hazard accounts for but 
doesn’t explain between study 
heterogeneity

Can be complex to interpret due to mix of 
approaches

Option 1: Accounting for clustering using baseline hazard stratified by studies, and fixed study 
membership terms 



One Stage IPD-MA of Joint Data – Illustrative example
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Model Option
Longitudinal Treatment Effect 

Parameter(s)

Naïve – ignoring clustering 𝛽L2 -9.52 (-9.92, -9.19)

Fixed interaction with study 

membership (both sub-

models)

𝛽L2𝐶𝑂𝑂𝑃 -10.04 (-12.39, -7.91)

𝛽L2𝐸𝑊𝑃𝐻𝐸 -13.15 (-15.24, -11.10)

𝛽L2𝑀𝑅𝐶1 -7.78 (-8.17, -7.42)

𝛽L2𝑀𝑅𝐶2 -10.72 (-11.33, -10.07)

𝛽L2𝑆𝐻𝐸𝑃 -8.31 (-8.88, -7.75)

𝛽L2𝑆𝑇𝑂𝑃 -14.16 (-15.40, -12.93)

Study level random effects 𝛽L2 -2.70 (-3.09, -2.42)

Baseline hazard stratified by 

study, and fixed interaction 

with study membership in 

longitudinal

𝛽L2 -10.63 (-11.17, -10.06)

• Obvious issue with option that 
accounts for between study 
heterogeneity only using study 
level random effects
• due to small number of studies 

in meta-analysis

• Results from other approaches 
look comparable

• As with two stage MA difference 
between result for STOP trial and 
other trials

Analysis from Sudell et al 2018



One Stage IPD-MA of Joint Data – Illustrative example

46

Model Option
Time-to-event Treatment Effect 

Parameter(s)

Naïve – ignoring clustering 𝛽S1 -0.02 (-0.13, 0.07)

Fixed interaction with study 

membership (both sub-

models)

𝛽S1𝐶𝑂𝑂𝑃 0.02 (-0.37, 0.41)
𝛽S1𝐸𝑊𝑃𝐻𝐸 -0.03 (-0.31, 0.25)
𝛽S1𝑀𝑅𝐶1 0.00 (-0.16, 0.15)
𝛽S1𝑀𝑅𝐶2 -0.01 (-0.16, 0.16)
𝛽S1𝑆𝐻𝐸𝑃 -0.11 (-0.31, 0.09)
𝛽S1𝑆𝑇𝑂𝑃 -0.49 (-0.95, -0.14)

Study level random effects 𝛽S1 -0.05 (-0.14, 0.03)

Baseline hazard stratified by 

study, and fixed interaction 

with study membership in 

longitudinal

𝛽S1 -0.06 (-0.14, 0.03)

• Results from one stage comparable 
to results from two stage.  

• Insignificant direct effect of 
treatment on risk of death

• Again results from  STOP trial differ 
from other trials

Analysis from Sudell et al 2018
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Model Option Association Parameter(s)

Naïve – ignoring clustering 𝛼 2 0.032 (0.029, 0.035)

Fixed interaction with 

study membership (both 

sub-models)

𝛼 2 0.013 (0.009, 0.019)

Study level random effects
𝛼 2 0.011 (0.007, 0.016)

𝛼 3 0.052 (0.049, 0.055)

Baseline hazard stratified 

by study, and fixed 

interaction with study 

membership in 

longitudinal

𝛼 2 0.013 (0.006, 0.017)

𝛼 3 0.000 (-0.039, 0.048)

• Significant association at individual 
level from all approaches
• Interpretation – higher than 

population average SBP for an 
individual is linked to greater 
risk of an event 

• Indirect effect of treatment 
through SBP

• Difference between naïve 
approach and approaches that 
account for clustering

• Potential problems again where 
clustering solely account for using 
study level random effects Analysis from Sudell et al 2018
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• Perform same preliminaries as two-stage (e.g. graphical representations to assess 
link between longitudinal and time-to-event, and differences between studies

• Always account for clustering

• Take care not to account for “the same” heterogeneity in multiple ways in a joint 
model – be clear what parameters occur where given the association structure you 
are employing

• Consider whether there are sufficient studies to estimate the number of study level 
random effects



Key software
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• Joint models can be fitted in many packages (SAS, Stata, WinBUGS,…) however 
analyses here done in R using

• Single study joint modelling packages
• joineR
• JM

• Multi-study joint modelling packages
• joineRmeta
• joineRmetaBayes (in progress)

• Meta-analytic packages
• meta
• metafor



Summary
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• Joint models are growing in popularity as a way of simultaneously modelling related 
longitudinal and time-to-event data

• IPD is probably required for a meta-analysis of joint data

• Two stage IPD joint meta-analytic models 
• simple to be implemented 
• limited in terms of heterogeneity investigation

• One stage methods 
• more complex and time consuming
• Allow greater investigation of heterogeneity
• Care must be taken in modelling of clustering
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