28 January 2025

Demonstration of New Random-Effects Methods in RevMan (webinar 2)

Areti-Angeliki Veroniki, MSc, PhD

St. Michael's Hospital, Unity Health Toronto IHPME, University of Toronto

Jo McKenzie, MSc, PhD

Methods for Evidence Synthesis Unit, School of Public Health and Preventive Medicine, Monash University

Institute of Health Policy, Management and Evaluation **UNIVERSITY OF TORONTO**

Webinar 1 (October 2024)

- Process used to develop the recommendations for the random-effects meta-٠ analysis methods to be implemented in RevMan
- Outlined the new methods, along with the reasons for why the methods had ٠ been selected

Webinar 2: Objective

To demonstrate the new random-effects meta-analysis methods in RevMan

Outline

- Brief overview of the random-effects methods that are available in RevMan (as of the 23rd January 2025)
- Demonstration of the methods using RevMan (including what method to use in which scenario):
 - Confidence interval methods for the summary mean effect
 - Heterogeneity estimators (and confidence interval method)
 - Prediction interval
- Considerations for what to write in the protocol and review report
- Questions

Created by Berkah Icon from Noun Project

Cochrane Handbook: Chapter 10

10.3 A generic

inverse-variance

approach to meta-

It is important to be familiar with the type of data (e.g. dichotomous, continuous) that result from
measurement of an outcome in an individual study, and to choose suitable effect measures for comparing
intervention groups.

Random-effects methods implemented in RevMan

Updating RevMan

			Statistical method	Inverse variance
🔹 New Outcome Wizard			- 4	
New Outcome Wizard Which analysis method do you want to u	ise?	?	Effect measure	Odds ratio
Statistical Method	Analysis Model		Analysis model	Random effects
○ <u>P</u> eto	○ <u>F</u> ixed Effect	=		
○ <u>M</u> antel-Haenszel	<u>R</u> andom Effects		Heterogeneity estimator	DerSimonian and Laird (DL)
Inverse Variance			<u> </u>	Restricted Maximum Likelinood (REML)
○ <u>E</u> xp[(O-E) / Var]				□ Show confidence interval for heterogeneity estimator on forest plot
Effect Measure			Totals	Totals and subtotals
○ Peto Odds Ratio	○ Mea <u>n</u> Difference		TOTALS	
Odds Ratio	O Std. Mean Difference			Test for subgroup differences
○ Ri <u>s</u> k Ratio	○ Name of Effe <u>c</u> t Measure:			esclor subjoup unclences
◯ Risk <u>D</u> ifference	Hazard Ratio			Swap event and non-event
Cancel	Back <u>N</u> ext >	<u>F</u> inish		Show prediction interval for total on forest plot (
			Confidence / prediction intervals	95%

Summary effect CI method

Wald-type (normal distribution) \odot

0 Hartung and Knapp, Sidik and Jonkman (HKSJ) distribution

Dataset for Meta-Analysis

(Acupuncture for dysmenorrhoea – menstrual symptom score)

Study	mean.t	sd.t	n.t	mean.c	sd.c	n.c
Han 2012	1.7	1.15	80	3.03	1.71	40
Peng 2012	1.77	0.9	30	2.83	0.7	30
Qiao 2013	8.14	4.16	60	9.7	5.55	20
Ruan 2011	3.55	1.21	30	5.99	2.27	30
Wang 2014a	5.53	2.8	30	7.12	2.7	30
Zhang 2013a	2.29	1.33	30	8.21	3.87	30

Fitting a random-effects meta-analysis in RevMan

Inference on heterogeneity (T²):

- We will show the option to fit a DerSimonian-Laird (DL) (standard option)
- Indicate and highlight the use of the Restricted Maximum Likelihood (REML) method (recommended)

Inference on summary mean effect (µ):

- We will show the option to fit a Wald Type (WT) confidence interval (CI) or µ (standard option)
- Indicate and highlight the use of the Hartung-Knapp-Sidik-Jonkman (HKSJ) CI (recommended when τ² > 0 and # of studies >2)

What was in RevMan up to now:

• DL and Wald Type (WT) methods

New methods:

• REML and HKSJ methods

Enter Dataset in RevMan

1 Menstrual Symptom Score

🚯 The estimated heterogeneity (Tau²) is 1.43. Cochrane's guidance is to use the Hartung-Knapp-Sidik-Jonkman method to calculate summary effect confidence intervals in this scenario. Learn more.

								+ Add Data row	+ Add S
Study A	G	Acupuncture	I		Medication		Weight	Mean difference	Activ
Study 1	en Mean	SD	Total	Mean	SD	Total	weight	IV, Random, 95% CI	Actio
Han 2012	1.7	1.15	80	3.03	1.71	40	20.1%	-1.33 [-1.92 , -0.74]	: Actio
Peng 2012	1.77	0.9	30	2.83	0.7	30	20.8%	-1.06 [-1.47 , -0.65]	: Actio
Qiao 2013	8.14	4.16	60	9.7	5.55	20	9.4%	-1.56 [-4.21 , 1.09]	: Actio
Ruan 2011	3.55	1.21	30	5.99	2.27	30	18.5%	-2.44 [-3.36 , -1.52]	: Actio
Wang 2014a	5.53	2.8	30	7.12	2.7	30	15.8%	-1.59 [-2.98 , -0.20]	: Actio
Zhang 2013a	2.29	1.33	30	8.21	3.87	30	15.4%	-5.92 [-7.38 , -4.46]	: Actio
Total (95% CI)			260			180	100.0%	-2.25 [-3.33 , -1.17]	

Test for overall effect: Z = 4.07 (P < 0.0001)

Test for subgroup differences: Not applicable

Heterogeneity: Tau² (DL, 95% Cl) = 1.43 [0.82 , 19.51]; Chi² = 43.81, df = 5 (P < 0.00001); l² = 89%

(DerSimonian and Laird [DL] and Wald-Type [WT])

i Statistical method	Inverse variance	Peto Mantel-Ha	enszel				
i Effect measure	Mean difference	✓ Inverse variance					
i Analysis model	Random effects	Fixed effect	ct				
i Heterogeneity estimator	 DerSimonian and Laird (DL) Restricted Maximum-Likelihood (REML) 	✓ Random et	ffects				
	✓ Show confidence interval for heterogeneity estimator on	forest plot 🚯	✓ Totals	and subtotals			
Totals	Totals and subtotals		Subtot	als only			
	 Test for subgroup differences Show prediction interval for total on forest plot (i) 		No tota	als			
Confidence / prediction intervals	95%						
Summary effect CI method	Wald-type Hartung-Knapp-Sidik-Jonkman (HKSJ)					is this second at	
The estimated heterogen	ieity (Taur) is 1.43. Coonfane's guidance is to use the Hartung-K	napp-Sidik-Jonkman m	nethod to calcu	late summary effect c	onnuence intervals	in this scenario. <u>L</u>	<u>earn more</u> .

Ihe estimated heterogeneity (Tau²) is 1.43. Cochrane's guidance is to use the Hartung-Knapp-Sidik-Jonkman method to calculate summary effect confidence intervals in this scenario. Learn more.

Summary effect CI method

Wald-type

Hartung-Knapp-Sidik-Jonkman (HKSJ)

Hartung-Knapp-Sidik-Jonkman (HKSJ)

🚯 The estimated heterogeneity (Tau²) is 1.43. Cochrane's guidance is to use the Hartung-Knapp-Sidik-Jonkman method to calculate summary effect confidence intervals in this scenario. Learn more.

Changing the option from Wald-Type to HKSJ – the pop-up disappears Heterogeneity estimator DerSimonian and Laird (DL) Restricted Maximum-Likelihood (REML) Show confidence interval for heterogeneity estimator on forest plot 🕤 Totals and subtotals Totals Test for subgroup differences Show prediction interval for total on forest plot Confidence / prediction intervals 95% Summary effect CI method Wald-type

Forest Plot – DL and HKSJ methods

1 Menstrual Symptom Score

1.1 Acupuncture for dysmenorrhoea

Data Options Graphs Acupuncture Medication Mean difference Mean difference Study or Subgroup SD Total Mean SD Total Weight IV, Random, 95% Cl IV, Random, 95% CI Mean Han 2012 1.7 1.71 1.15 80 3.03 40 20.1% -1.33 [-1.92 , -0.74] Peng 2012 1.77 0.9 2.83 0.7 20.8% -1.06 [-1.47 , -0.65] 30 30 Qiao 2013 9.7 -1.56 [-4.21, 1.09] 8.14 4.16 60 5.55 20 9.4% Ruan 2011 3.55 1.21 5.99 2.27 18.5% -2.44 [-3.36 , -1.52] 30 30 Wang 2014a 2.8 2.7 -1.59 [-2.98, -0.20] 5.53 30 7.12 30 15.8% Zhang 2013a 2.29 1.33 30 8.21 3.87 15.4% -5.92 [-7.38 , -4.46] 30 Total (HKSJ^a) 260 180 100.0% -2.25 [-4.12 , -0.37] Test for overall effect: Z = 4.07 (P < 0.0001) -10 -5 5 10 Test for subgroup differences: Not applicable Favours [experimental] Favours [control] Heterogeneity: Tau² (DL^b, 95% CI) = 1.43 [0.82, 19.51]; Chi² = 43.81, df = 5 (P < 0.00001); I² = 89%

Footnotes

^aCI calculated by Hartung-Knapp-Sidik-Jonkman method.

^bTau² calculated by DerSimonian and Laird method.

Next

Add Note

G Previous

Recommended method for τ^2 : REML!

Choose method for τ^2

1 Menstrual Symptom Score

1.1 Acupuncture for dysmenorrhoea

G Previous

Forest Plot – REML and HKSJ methods

1 Menstrual Symptom Score G Previous Next Add Note 1.1 Acupuncture for dysmenorrhoea Data Options Graphs Acupuncture Medication Mean difference Mean difference Study or Subgroup SD SD Weight IV, Random, 95% CI IV, Random, 95% CI Mean Total Mean Total Han 2012 1.7 1.15 80 3.03 1.71 40 18.7% -1.33 [-1.92, -0.74] -Peng 2012 1.77 0.9 30 2.83 0.7 19.0% -1.06 [-1.47 , -0.65] 30 Qiao 2013 8.14 4.16 60 9.7 5.55 20 11.7% -1.56 [-4.21, 1.09] Ruan 2011 3.55 1.21 30 5.99 2.27 30 17.9% -2.44 [-3.36 , -1.52] Wang 2014a 16.4% 5.53 2.8 30 7.12 2.7 -1.59 [-2.98, -0.20] 30 Zhang 2013a 2.29 1.33 30 8.21 3.87 30 16.1% -5.92 [-7.38 , -4.46] Total (HKSJ^a) 180 100.0% -2.29 [-4.19 , -0.39] 260 Test for overall effect: Z = 3.10 (P = 0.002) -10 10 -5 Ó 5 Test for subgroup differences: Not applicable Favours [experimental] Favours [control] Heterogeneity: Tau² (REML^b, 95% CI) = 2.82 [0.82 , 19.51]; Chi² = 43.81, df = 5 (P < 0.00001); l² = 94% Footnotes

^aCI calculated by Hartung-Knapp-Sidik-Jonkman method.

^bTau² calculated by Restricted Maximum-Likelihood method.

Forest plots across different choices of methods

DL frequently under-estimates τ^2

(DerSimonian and Laird [DL] and Harung-Knapp-Sidik-Jonkman [HKSJ])

	Data		Options			Graphs		
	Intervals in this scenario. Learn more.							
						+ Add Data rov	• + Add Subgroup	
Shudha A	Experimental		Control		Weight	Odds ratio	Action	
Study	Events	Total	Events	Total	weight	IV, Random, 95% CI	Action	
Study A	9	345	40	342	29.7%	0.20 [0.10 , 0.42]	: Action -	
Study B	3	58	5	59	7.4%	0.59 [0.13 , 2.59]	: Action -	
Study C	7	286	24	290	22.0%	0.28 [0.12 , 0.66]	: Action -	
Study D	4	200	13	200	12.5%	0.29 [0.09 , 0.92]	: Action -	
Study E	12	116	22	116	28.4%	0.49 [0.23 , 1.05]	: Action 🗸	
Total (95% CI)	35	1005	104	1007	100.0%	0.32 [0.19 , 0.54]		

Test for overall effect: Z = 5.59 (P < 0.00001)

Test for subgroup differences: Not applicable

Heterogeneity: Tau² (DL, 95% CI) = 0.00 [0.00 , 1.30]; Chi² = 3.51, df = 4 (P = 0.48); I² = 0%

Data	Options	Graphs						
The esting	nated heterogeneity (Tau ²) is 0.00. Cochrane's guidance is to use the Wald-type method to calculate summary effect confidence intervals in this scenario. Learn m	iore.						
i Effect measure	Odds ratio							
i Analysis model	Random effects							
i Heterogeneity estimator	 DerSimonian and Laird (DL) Restricted Maximum-Likelihood (REML) 							
	✓ Show confidence interval for heterogeneity estimator on forest plot i							
Totals	Totals and subtotals							
	Test for subgroup differences							
	Swap event and non-event							
	□ Show prediction interval for total on forest plot 🧯							
Confidence / prediction intervals	95%							
Summary effect CI method	 Wald-type Hartung-Knapp-Sidik-Jonkman (HKSJ) 							

3 The estimated heterogeneity (Tau²) is 0.00. Cochrane's guidance is to use the Wald-type method to calculate summary effect confidence intervals in this scenario. Learn more.

DL frequently under-estimates τ^2

Data	Options	Graphs	

🚯 The estimated heterogeneity (Tau²) is 0.00. Cochrane's guidance is to use the Wald-type method to calculate summary effect confidence intervals in this scenario. Learn more.

	Experin	nental	Cont	trol		Odds ratio	Odds	ratio
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	IV, Randor	n, 95% Cl
Study A	9	345	40	342	29.7%	0.20 [0.10 , 0.42]	_ _	
Study B	3	58	5	59	7.4%	0.59 [0.13 , 2.59]		
Study C	7	286	24	290	22.0%	0.28 [0.12 , 0.66]		
Study D	4	200	13	200	12.5%	0.29 [0.09 , 0.92]		
Study E	12	116	22	116	28.4%	0.49 [0.23 , 1.05]		
Total (HKSJ³)		1005		1007	100.0%	0.32 [0.19 , 0.54]	•	
Total events:	35		104				·	
Test for overall effect:	Z = 5.59 (F	o < 0.000	01)			C	0.05 0.2 1	5 20
Test for subgroup diffe	erenees: No	ot applica	blo			Favours	[experimental]	Favours [control]
Heterogeneity Tau ² (I	DL⁵, 95% C	I) = 0.00	[0.00 , 1.3	0]; Chi² =	3.51, df =	= 4 (P = 0.48); I ² = 0%		

Footnotes

^aCI calculated by Hartung-Knapp-Sidik-Jonkman method.

^bTau² calculated by DerSimonian and Laird method.

When $\tau^2=0$, use the Wald-type CI

i Statistical method	Inverse variance							
i Effect measure	Odds ratio							
i Analysis model	Random effects							
i Heterogeneity estimator	 DerSimonian and Laird (DL) Restricted Maximum-Likelihood (REML) 							
	Show confidence interval for heterogeneity estimator on forest plot 3							
Totals	Totals and subtotals							
	Test for subgroup differences							
	Swap event and non-event							
	Show prediction interval for total on forest plot (
Confidence / prediction intervals	95%							
i Summary effect CI method	 Wald-type Hartung-Knapp-Sidik-Jonkman (HKSJ) 							

Confidence interval for Tau²

95% CI for $\hat{\tau}^2$: [0.00 1.30]

Bain et al CDSR 2014: https://pubmed.ncbi.nlm.nih.gov/25331331/

Remember: In the case of 2 studies, the HKSJ can lead to overly conservative results!

1.5 Bain et al 2014 M	A					C Previous	Next A	Add Note
Data Options Graphs								
3 There are only two data rows contributing to this analysis. Cochrane's guidance is to use the Wald-type method to calculate summary effect confidence intervals in this scenario. Learn more.								
						+ Add Data rov	+ Add Sul	bgroup
alusta A	Experimental	I	Control	I		Odds ratio	.	
Study 1	Events	Total	Events	Total	weight	IV, Random, 95% CI	Action	
Caramez 1998	23	46	27	49	59.1%	0.81 [0.36 , 1.83]	: Action -	
Silverman 2005	4	117	11	102	40.9%	0.29 [0.09 , 0.95]	: Action -	
Total (95% CI)	27	163	38	151	100.0%	0.54 [0.00 , 320.21]		

est for overall effect: Z = 1.24 (P = 0.22)

est for subgroup differences: Not applicable

leterogeneity: Tau² (REML, 95% CI) = 0.26 [0.00 , >100]; Chi² = 1.98, df = 1 (P = 0.16); l² = 49%

🚯 There are only two data rows contributing to this analysis. Cochrane's guidance is to use the Wald-type method to calculate summary effect confidence intervals in this scenario. Learn more.

Choose WT when the number of studies is k=2

Footnotes

^aCI calculated by Wald-type method.

^bTau^a calculated by Restricted Maximum-Likelihood method.

Prediction Intervals for random-effects meta-analysis

A 95% prediction interval where approximately 95% of the true treatment effects are predicted to fall is:

Prediction intervals for random-effects meta-analysis

- CI = confidence interval, PI = prediction interval, REML = restricted maximum likelihood, *k* = number of studies,
- Tau² = estimated between-study variance, SE² = estimated 'typical' within study variance, HKSJ = Hartung-Knapp and Sidik-Jonkman

Prediction Interval

Data	Options	Graphs
3 Statistical method	Inverse variance	
Effect measure	Odds ratio	
🚯 Analysis model	Random effects	
i Heterogeneity estimator	 DerSimonian and Laird (DL) Restricted Maximum-Likelihood (REML) 	
Totals	 Show confidence interval for heterogeneity estimator on forest plot i Totals and subtotals 	
	Test for subgroup differences	
	Swap event and non-event	Check box
	Show prediction interval for total on forest plot i	to obtain a
Confidence / prediction intervals	95%	
i Summary effect CI method	O Wald-type	32

Prediction Interval

	Experin	nental	Cont	trol		Odds ratio	Odds	ratio
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	IV, Rando	m, 95% Cl
Study A	9	345	40	342	29.0%	0.20 [0.10 , 0.42]		
Study B	3	58	5	59	7.9%	0.59 [0.13 , 2.59]		
Study C	7	286	24	290	22.2%	0.28 [0.12 , 0.66]		
Study D	4	200	13	200	13.1%	0.29 [0.09 , 0.92]		
Study E	12	116	22	116	27.9%	0.49 [0.23 , 1.05]		
Total (HKSJª) 95% prediction interva	I	1005		1007	100.0%	0.32 [0.19 , 0.54]		
Total events:	35		104					
Test for overall effect: 2	Z = 5.32 (F	- < 0.000	01)					
Test for subgroup diffe	rences: No	ot applica	ble			Favours	experimental]	Favours [control]
Heterogeneity: Tau ² (R	REML⁵, 959	% CI) = 0	.02 [0.00 ,	1.30]; Ch	i² = 3.51,	df = 4 (P = 0,48); l ² = 7%		
)				

Footnotes

^aCI calculated by Hartung-Knapp-Sidik-Jonkman method.

^bTau² calculated by Restricted Maximum-Likelihood method.

PI is equal to CI when $\tau^2=0$

PI is different between WT and HKSJ, as it is based on the standard normal and t-distribution, respectively

^aCl calculated by Wald-type method.

^bTau² calculated by DerSimonian and Laird method.

Considerations for what to write in the protocol and review report

- Be aware of the random-effects methods and the recommendations for what method to use in which scenario when planning the statistical methods in your review → see Chapter 10 of the Cochrane Handbook
- PRISMA 2020 helpful for guiding what to report

PRISMA 2020 - item 13d

Describe any methods used to synthesise results and provide a rationale for the choice(s). If meta-analysis was performed, **describe the model(s)**, **method(s) to identify the presence and extent of statistical heterogeneity**, and **software package(s) used**

Essential elements (some):

If meta-analysis was done, specify:

- the meta-analysis model (fixed-effect, fixed effects, or random-effects) and provide rationale for the selected model
- the method used (such as Mantel-Haenszel, inverse-variance)
- any methods used to identify or quantify statistical heterogeneity (such as visual inspection of results, a formal statistical test for heterogeneity, heterogeneity variance (τ²), inconsistency (such as I²), and prediction intervals

PRISMA 2020 – item 13d (continued)

Describe any methods used to synthesise results and provide a rationale for the choice(s). If meta-analysis was performed, **describe the model(s)**, **method(s) to identify the presence and extent of statistical heterogeneity**, and **software package(s) used**

Essential elements (some):

If a random-effects meta-analysis model was used, specify:

- the between-study (heterogeneity) variance estimator used (such as DerSimonian and Laird, restricted maximum likelihood (REML))
- the method used to calculate the confidence interval for the summary effect (such as Waldtype confidence interval, Hartung-Knapp-Sidik-Jonkman)

"We will combine estimates of treatment effect using inverse variance weighting, using a random-effects model. We will use a random-effects model since we expect there will be clinical diversity in ... The Restricted Maximum Likelihood (REML) method will used to estimate between-trial variance, and a confidence interval will for the heterogeneity estimate will be calculated. The Hartung-Knapp-Sidik-Jonkman method will be used to calculate a confidence interval for the meta-analysis effect estimate when there are at least 3 studies and the estimate of heterogeneity is greater than zero. In other scenarios (i.e. 2 studies, or where the estimate of heterogeneity is equal to zero) we will use the Wald-type method. We will calculate prediction intervals to provide a predicted range for the true treatment effect in an individual study."

"We will combine estimates of treatment effect using inverse variance weighting, using a random-effects model. We will use a random-effects model since we expect there will be clinical diversity in ... The **Restricted Maximum Likelihood (REML) method will used to estimate between-trial variance**, and a confidence interval will for the heterogeneity estimate will be calculated. The Hartung-Knapp-Sidik-Jonkman method will be used to calculate a confidence interval for the meta-analysis effect estimate when there are at least 3 studies and the estimate of heterogeneity is greater than zero. In other scenarios (i.e. 2 studies, or where the estimate of heterogeneity is equal to zero) we will use the Wald-type method. We will calculate prediction intervals to provide a predicted range for the true treatment effect in an individual study when there are at least 10 studies."

Method used to calculate the between-study (heterogeneity) variance (Tau2)

"We will combine estimates of treatment effect using inverse variance weighting, using a random-effects model. We will use a random-effects model since we expect there will be clinical diversity in ... The Restricted Maximum Likelihood (REML) method will used to estimate between-trial variance, and **a confidence interval will for the heterogeneity estimate will be calculated**. The Hartung-Knapp-Sidik-Jonkman method will be used to calculate a confidence interval for the meta-analysis effect estimate when there are at least 3 studies and the estimate of heterogeneity is greater than zero. In other scenarios (i.e. 2 studies, or where the estimate of heterogeneity is equal to zero) we will use the Wald-type method. We will calculate prediction intervals to provide a predicted range for the true treatment effect in an individual study when there are at least 10 studies."

A confidence interval for Tau2 will be calculated (note that the specific method has not been described)

"We will combine estimates of treatment effect using inverse variance weighting, using a random-effects model. We will use a random-effects model since we expect there will be clinical diversity in ... The Restricted Maximum Likelihood (REML) estimator will used to estimate between-trial variance, and a confidence interval will for the heterogeneity estimate will be calculated. The Hartung-Knapp-Sidik-Jonkman method will be used to calculate a confidence interval for the meta-analysis effect estimate when there are at least 3 studies and the estimate of heterogeneity is greater than zero. In other scenarios (i.e. 2 studies, or where the estimate of heterogeneity is equal to zero) we will use the Wald-type method. We will calculate prediction intervals to provide a predicted range for the true treatment effect in an individual study when there are at least 10 studies."

Decision rules to determine what confidence interval method for the summary mean will be used in which scenario

"We will combine estimates of treatment effect using inverse variance weighting, using a random-effects model. We will use a random-effects model since we expect there will be clinical diversity in ... The Restricted Maximum Likelihood (REML) estimator will used to estimate between-trial variance, and a confidence interval will for the heterogeneity estimate will be calculated. The Hartung-Knapp-Sidik-Jonkman method will be used to calculate a confidence interval for the meta-analysis effect estimate when there are at least 3 studies and the estimate of heterogeneity is greater than zero. In other scenarios (i.e. 2 studies, or where the estimate of heterogeneity is equal to zero) we will use the Wald-type method. We will calculate prediction intervals to provide a predicted range for the true treatment effect in an individual study when there are at least 10 studies."

A prediction interval will be calculated, along with the scenario when it will be calculated

Be sure to avoid ...

• Fitting multiple meta-analysis methods and reporting the results that are most favourable

