Rapid Scoping Reviews

Dr. Fiona Campbell
Senior Lecturer in Evidence Synthesis, Newcastle University
Editor, Campbell Collaboration
Methods Guidance Series

- Public partners, healthcare providers and policymakers as knowledge users
- Searching
- Forming the team, study selection, data extraction and risk of bias
- Assessing the certainty of the evidence
- Software

- Rapid Qualitative Evidence Synthesis
- Rapid Scoping Reviews
Rapid Scoping Reviews
Danielle Pollock, Anthea Sutton, Andrea Tricco, Chantelle Garritty, Hanan Khalil

Rapid Scoping Review

- Some processes are more time resource intense
- Some rapid approaches are going to impact differently
- Focus on question formulation, searching, data extraction and reporting
Cochrane Rapid Review

Definition:

‘A type of evidence synthesis that brings together and summarises information from different research studies to produce evidence for people such as the public, healthcare providers, researchers, policymakers, and funders in a systematic, resource-efficient manner. This is done by speeding up the ways we plan, do and/or share the results of conventional structured (systematic) reviews, by simplifying or omitting a variety of methods that should be clearly defined by the authors.’

‘Rapid Scoping Search’

- Search terms
- Scale
- Already in progress or complete
Rapid scoping search friends
Sources of existing systematic reviews and protocols

- Cochrane Library
- Epistomonikos (clinical or health policy questions)
- Trip
- Centre for Reviews and Dissemination
- Campbell Library
- Collaboration for Environmental Evidence
- International initiative for impact evaluation (3ie)
- Prospero
Fig. 1 Overview of two-stage rapid review process (adapted with permission from Oliver et al) [11]

Wilson et al 2021
What is a Scoping Review?

Scoping reviews are a type of evidence synthesis that aims to systematically identify and map the breadth of evidence available on a particular topic, field, concept or issues, often irrespective of source (i.e. primary research, reviews, non-empirical evidence) within or across particular contexts.

Munn et al 2022
What is a Scoping Review?

Scoping reviews are a type of evidence synthesis that aims to **systematically** identify and **map the breadth of evidence** available on a particular **topic, field, concept or issues**, often irrespective of source (ie. **primary research, reviews, non-empirical evidence**) within or across particular contexts.

Munn et al 2022
How can I address the problem that the numbers of children in our school suffering from poor mental wellbeing and anxiety is growing?

Would a mindfulness intervention work for children in our school?

I wonder what children and their parents feel might be the best solutions?

I would really like to know what different types of interventions have been developed and tried in schools like ours.
The rise in the use of scoping reviews

https://dailytravelphotos.com
An exciting update is coming in 2024! More methods will be added including mixed methods. Stay tuned for more details!

Right Review

Previously known as "What Review is Right for You?"

This tool is designed to provide guidance and supporting material to reviewers on methods for the conduct and reporting of knowledge synthesis.

Select the type of review:

- Quantitative
- Qualitative

https://rightreview.knowledgetranslation.net/
Guidance for Scoping Reviews

Abstract

Scoping reviews are an increasingly popular approach to researching the literature with the aim of identifying key elements. They provide a broad overview of the research landscape, allowing researchers to identify gaps in the evidence base and inform future research questions. Scoping reviews can be conducted in a variety of ways, but they often involve identifying existing studies, synthesizing their findings, and identifying any gaps or gaps in the literature. They are particularly useful when the research question is broad and the evidence base is largely unknown.

Terminology

- **Scoping review**: A large-scale literature review that aims to map the literature in a specific field.
- **Search strategy**: A systematic approach to finding relevant studies.
- **Inclusion criteria**: The criteria used to determine which studies are included in the review.
- **Exclusion criteria**: The criteria used to determine which studies are excluded from the review.
- **Data collection**: The process of extracting data from the included studies.
- **Data synthesis**: The process of combining and analyzing the data from the included studies.
- **Results**: The findings of the review, including any gaps or trends in the literature.
BIG PICTURE REVIEW FAMILY

Depth (content)
- Systematic review: *Primary studies*
- Review of reviews: *Systematic reviews*

Breadth (scope)
- Scoping reviews
- Mapping reviews and EGMs
- Focused scoping review
- Focused mapping review and synthesis
- Mega-maps

Saran & White 2018
Mapping reviews, scoping reviews, and evidence and gap maps (EGMs): the same but different — the “Big Picture” review family

Fiona Campbell¹*, Andrea C. Tricco², Zachary Munn³, Danielle Pollock³, Ashrita Saran⁴, Anthea Sutton⁵, Howard White⁶ and Hanan Khalil⁷

Abstract

Scoping reviews, mapping reviews, and evidence and gap maps are evidence synthesis methodologies that address broad research questions, aiming to describe a bigger picture rather than address a specific question about intervention effects.
<table>
<thead>
<tr>
<th>Purpose</th>
<th>Scoping Reviews</th>
<th>Mapping Reviews</th>
<th>Evidence and Gap Maps (EGMs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clarifies and identifies key concepts/definitions, characteristics or factors related to a concept</td>
<td>Collates, describes, and catalogues the available evidence related to the question of interest</td>
<td>Systematic evidence synthesis product which visually displays the available evidence and identify research gaps relevant to a specific research question</td>
<td></td>
</tr>
</tbody>
</table>

| Question | Narrow focus to a broad question: What are the definitions for a particular concept? | Broad question: what do we know about a topic? Or what and where does research exist on a particular area? | Very broad question Includes all relevant evidence of a specified kind for a particular sector, or sub-sector |

| Evidence source | Identifies and maps evidence irrespective of source Number of evidence sources included can vary | Identifies and maps evidence irrespective of source Generally >80+ studies | Identifies and maps evidence irrespective of source Generally > 80+ studies |

| Extraction | Extensive and detailed data extractions | High-level with pre-defined codes for extraction | High-level with pre-defined codes for extraction |

| Analysis | Inductive (need to be developed) or deductive (pre-determined) analysis (may include basic qualitative content analysis) | Deductive summary of high level data with pre-defined codes | Deductive summary of high-level data dependent on framework |

| Presentation of results | Visual summaries must be accompanied by a descriptive synthesis. With/without EGMs | Visual summaries With/without EGMs | Visual, interactive online output placed on a web-based platform, such as a funders webpage |

Campbell, F., Tricco, A.C., Munn, Z. et al. Mapping reviews, scoping reviews, and evidence and gap maps (EGMs): the same but different — the "Big Picture" review family. Syst Rev 12, 45 (2023).
Scoping Reviews vs Rapid Scoping Reviews

<table>
<thead>
<tr>
<th></th>
<th>Big Picture review</th>
<th>Rapid Big Picture Review</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good team working</td>
<td>Good team working required but greater flexibility with time frames. More opportunities to build team capacity, undertake training and try new tools</td>
<td>Experienced team, aware of what the implications of the time frames will mean for the review findings, close dialogue with commissioners.</td>
</tr>
<tr>
<td>Duration</td>
<td>Approximately 1 year</td>
<td>2 weeks-4 months</td>
</tr>
<tr>
<td>Review Questions</td>
<td>Several broad questions</td>
<td>Fewer questions, clearly specified and feasible within time and resource constraints</td>
</tr>
<tr>
<td>Searches</td>
<td>Exhaustive searches</td>
<td>Limitations on search</td>
</tr>
<tr>
<td>Data extraction</td>
<td>In depth and concerned with knowledge generation</td>
<td>Tailored and limited to address commissioner decision needs</td>
</tr>
<tr>
<td>Presentation of findings</td>
<td>Published, detailed description</td>
<td>Often published in grey literature, more limited presentation of findings</td>
</tr>
</tbody>
</table>

Khangura et al 2012
Increasing use of ‘Rapid Scoping Reviews’

Count

Cochrane Methods
Rapid Reviews
Scoping Review Processes often Inadequately Reported

- 23% did not report processes of title and abstract screening
- 35% did not describe the processes for full-text screening
- 22% did not describe the methods of data charting/coding/data extraction

(Tricco et al 2016)
So...when would you consider a *RAPID* Big Picture approach

- Urgent clinical scenarios
- Emergent issues
- Policy timeframes
- Lack of resources
How long does a Big Picture review take?
https://predicter.github.io/
How do we reduce the time resource on screening?

- Reduce the search yield
- Accelerating the process of screening
Stages of the Review

1. Defining the question
2. Searching
3. **Screening**
4. Data extraction or coding
5. Description and presentation of findings
6. Writing the report and dissemination
Stages of the Review

Defining the question

Searching

Screening
Defining the question

Screening <-> Searching
Developing the parameters for the review question

Mapping review challenges

- Large volume of data to screen
- Complexity and ambiguity around the search terms affecting the search strategy

(Khalil et al ‘24)
A scoping review of the experience of implementing population testing for SARS-CoV-2

C.R. Foster*, F. Campbell, L. Blank, A.J. Cantrell, M. Black, A.C.K. Lee

School of Health and Related Research, The University of Sheffield, Regent Court, 30 Regent Street, Sheffield S1 4DA, UK

ARTICLE INFO

Article history:
Received 16 December 2020
Received in revised form
30 May 2021
Accepted 15 June 2021
Available online 26 June 2021

Keywords:
Mass testing
Population testing
SARS-CoV-2
COVID-19

ABSTRACT

Objectives: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) — also known as the coronavirus disease (COVID-19) — pandemic has led to the swift introduction of population testing programmes in many countries across the world, using testing modalities such as drive-through, walk-through, mobile and home visiting programmes. Here, we provide an overview of the literature describing the experience of implementing population testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

Study design: Scoping review.

Methods: We conducted a scoping review using Embase, Medline and the Cochrane Library in addition to a grey literature search. We identified indicators relevant to process, quality and resource outcomes related to each testing modality.

Results: In total, 2969 titles were identified from the academic literature and the grey literature search, of which 22 were relevant. Most studies were from the USA and the Republic of Korea. Drive-through testing centres were the most common testing modality evaluated and these provided a rapid method of testing whilst minimising resource use.

Conclusions: The evidence base for population testing lacks high quality studies, however, the literature provides evaluations of the advantages and limitations of different testing modalities. There is a need for robust evidence in this area to ensure that testing is deployed in a safe and effective manner in response to the COVID-19 pandemic.

© 2021 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.
Question Formulation

<table>
<thead>
<tr>
<th>Framework</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>PICOs</td>
<td>Population, Intervention, Comparator, Outcomes, Study design</td>
</tr>
<tr>
<td>PCC</td>
<td>Population, Concept, Context</td>
</tr>
<tr>
<td>ECLIPSE</td>
<td>Expectation, Client Group, Location, Impact, Professionals, Service</td>
</tr>
<tr>
<td>PEO</td>
<td>Patient / Population / Problem, Exposure, Outcomes or themes</td>
</tr>
<tr>
<td>SPIDER</td>
<td>Sample, Phenomenon of Interest, Design, Evaluation, Research type,</td>
</tr>
<tr>
<td>SPICE</td>
<td>Setting, Population/Perspective, Intervention, Evaluation</td>
</tr>
</tbody>
</table>
Key Recommendations

• Anticipate that there will be a lot of work at this stage
• Remember that the screening will represent a large proportion of review time
• Communicate the impact of rapid approach decisions with commissioners
• Don’t scrimp on planning time,
<table>
<thead>
<tr>
<th>Tool</th>
<th>Increase SPEED</th>
<th>Increase risk of BIAS/ERROR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single reviewer screening or limited dual approach</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Multiple reviewers (parallelisation of processes)</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Expert Reviewers</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Crowdsourcing</td>
<td>Yes</td>
<td>?</td>
</tr>
<tr>
<td>Automation aided screening</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
How long does it take to screen 10,000 titles and abstracts?

- Screen titles and abstracts (0.18-2.88 minutes)
- Resolve differences (5 minutes)
- Retrieve full paper (4 minutes)
- Screen full text (4.3-5 minutes)
- Resolve Differences (5 minutes)

Reviewer One: 5 weeks
Reviewer Two: 5 weeks

Nussbaemer-Streit et al ‘21

Cochrane Methods Rapid Reviews
How long does it take to screen 10,000 titles and abstracts?

Reviewer One: 4 weeks
Reviewer Two: 5 weeks
<table>
<thead>
<tr>
<th>Study</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edwards et al 2002</td>
<td>increased the number of randomized trials identified by an average of 9% (range 0 to 32)</td>
</tr>
<tr>
<td>Doust et al 2005</td>
<td>Diagnostic review – 1 study missed</td>
</tr>
<tr>
<td>Pham et al 2016</td>
<td>At least 1 relevant study missed</td>
</tr>
<tr>
<td>Stoll et al 2019</td>
<td>6.6-9.1% additional eligible studies identified</td>
</tr>
<tr>
<td>Shemilt et al 2016</td>
<td>1 study missed</td>
</tr>
<tr>
<td>Gartlehner et al 2020</td>
<td>13% of relevant studies missed</td>
</tr>
<tr>
<td>Nama et al 2021</td>
<td>targeted application of single-reviewer screening</td>
</tr>
</tbody>
</table>
Non-familial Intergenerational Interventions and their Impact on the Social and Mental Wellbeing of Younger and Older People: a Mapping Review and Evidence and Gap Map

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Children and young people centred outcomes</th>
<th>Older people centred outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Attainment and knowledge</td>
<td>Mental health</td>
</tr>
</tbody>
</table>
| Demonstration projects | ![Graph showing outcomes and interventions](image)
| Level 6 Ongoing intergenerational programmes | ![Graph showing outcomes and interventions](image)
| Level 7 Intergenerational community settings | ![Graph showing outcomes and interventions](image)
| Multiple levels (systematic reviews) | ![Graph showing outcomes and interventions](image)
Employ piloting exercises at abstract and full text screening levels to allow team members to test the study selection process on a selective sample of records to ensure that all team members apply a consistent approach to screening.

Conduct dual and independent screening of a proportion of records (e.g., 20%) and assess reviewer agreement— if agreement is good (e.g., $\kappa \geq 0.8$), proceed with single screening.
How long does to screen 10,000 titles and abstracts?

Conduct dual and independent screening of a proportion of records (e.g., 20%) and assess reviewer agreement—if agreement is good (e.g., $\kappa \geq 0.8$), proceed with single screening.

Garritty et al 2023
How long does it take to screen 10,000 titles and abstracts?

- **Reviewer One**: 3 weeks
- **Reviewer Two**: 3 weeks
- **Reviewer Three**: 3 weeks
- **Reviewer Four**: 3 weeks

Steps and Estimated Times
- Screen titles and abstracts (0.18-2.88 minutes)
- Resolve differences (5 minutes)
- Retrieve full paper (4 minutes)
- Screen full text (4.3-5 minutes)
- Resolve Differences (5 minutes)

Nussbaumer-Streit '21

Cochrane Methods

Rapid Reviews
Covidence – Screening Progress
Reviewers

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>7982</td>
<td>Anthea Sutton</td>
</tr>
<tr>
<td>17015</td>
<td>Kevin St-Martín</td>
</tr>
<tr>
<td>16708</td>
<td>Lilly Estenson</td>
</tr>
<tr>
<td>16710</td>
<td>Kelly Mannfeldt</td>
</tr>
<tr>
<td>14091</td>
<td>Jieyun Lee</td>
</tr>
<tr>
<td>14120</td>
<td>Iping guo</td>
</tr>
<tr>
<td>9989</td>
<td>Fiona Campbell</td>
</tr>
<tr>
<td>17146</td>
<td>Yongjie Yen</td>
</tr>
<tr>
<td>17182</td>
<td>Mark Byrne</td>
</tr>
<tr>
<td>17186</td>
<td>Marie Beaulieu</td>
</tr>
<tr>
<td>17186</td>
<td>Christopher Milton</td>
</tr>
<tr>
<td>17180</td>
<td>Julien Cadieux Genesse</td>
</tr>
</tbody>
</table>

Coding Assignments

<table>
<thead>
<tr>
<th>Id</th>
<th>Name</th>
<th>Study Group</th>
<th>Codes to apply</th>
<th>Allocated</th>
<th>Started</th>
<th>Remaining</th>
</tr>
</thead>
<tbody>
<tr>
<td>100378</td>
<td>Michaela Rogers</td>
<td>Coding on 'Mega-Map Mapping tool template' (Michaela Rogers)</td>
<td>Mega-Map Mapping tool</td>
<td>15</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>99615</td>
<td>Salma Rehman</td>
<td>Coding on 'Mega-Map Mapping tool template' (Salma Rehman)</td>
<td>Mega-Map Mapping tool</td>
<td>38</td>
<td>37</td>
<td>1</td>
</tr>
<tr>
<td>99614</td>
<td>Lilly Estenson</td>
<td>Coding on 'Mega-Map Mapping tool template' (Lilly Estenson)</td>
<td>Mega-Map Mapping tool</td>
<td>23</td>
<td>22</td>
<td>1</td>
</tr>
<tr>
<td>99613</td>
<td>Lilly Estenson</td>
<td>Sheffield team</td>
<td>Mega-Map Mapping tool</td>
<td>38</td>
<td>22</td>
<td>16</td>
</tr>
<tr>
<td>99612</td>
<td>Salma Rehman</td>
<td>Sheffield team</td>
<td>Mega-Map Mapping tool</td>
<td>38</td>
<td>37</td>
<td>1</td>
</tr>
<tr>
<td>99282</td>
<td>Jieyun Lee</td>
<td>For translation - Mandarin</td>
<td>Mega-Map Mapping tool</td>
<td>13</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>96738</td>
<td>Christopher Milton</td>
<td>Coding on 'Mega-Map Mapping tool template' (Christopher Milton)</td>
<td>Mega-Map Mapping tool</td>
<td>57</td>
<td>14</td>
<td>43</td>
</tr>
</tbody>
</table>
Benefits for Big Picture Reviews

- Time savings may be considerable – 90% and 88% (Shemilt et al 2013)

- Rank records by their inclusion probability and present records with the highest likelihood of inclusion first or present the inclusion probability for records at the title/abstract level

However

- Machine learning, may mean that the outliers get missed – a problem when mapping the landscape

- Many tools are not user-friendly and require advanced coding skills

Tools
- Covidence*
- DistillerSR
- EPPI-Reviewer*
- Rayyan
- SyRF
Abstrackr vs EPPI-reviewer (Tsou et al 2020)

For the 3 large reports, both EPPI-Reviewer and Abstrackr performed well with potential reductions in screening burden of 4 to 49% (Abstrackr) and 9 to 60% (EPPI-Reviewer).

Both tools had markedly poorer performance for 1 large report (inguinal hernia), possibly due to its heterogeneous key questions.
Recommendations

• Become familiar with machine learning technologies before using them in a rapid review

• Consider the implications of missed studies for the review and discuss with the commissioner

• Report how machine-learning has been used in the review
Data extraction/charting/coding (Haby et al '23)

<table>
<thead>
<tr>
<th>Tool</th>
<th>Increases speed</th>
<th>Increases risk of bias or error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limiting the data extracted</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Single reviewer data extraction or partial dual extraction</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Multiple reviewers</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Expert Reviewers</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Dual monitors</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Semi-automation</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Are our Evidence Based Methods Evidence Based?

<table>
<thead>
<tr>
<th>Evidence supporting decision regarding streamlined methods</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Single data extraction with verification resulted in more errors (a relative increase of 22%) but saved time (relative saving of 36%)</td>
<td>Buscemi et al 2006</td>
</tr>
<tr>
<td>Use of experienced extractors can expedite the process</td>
<td>Horton et al 2010, Jones et al 2005</td>
</tr>
<tr>
<td>In general continuous outcome data involving specific summary measures such as means and SD</td>
<td>Gotzsche et al 2007, Tendal et al 2009</td>
</tr>
</tbody>
</table>
Data Extraction/Coding/Charting

Surface View

How many icebergs are there in a 100 mile square radius?

Deep Dive

What is the nature of this iceberg?
For data extraction, employ a piloting exercise to allow team members to test this task on a small proportion of records to ensure that all team members perform it consistently and correctly.
Understanding the effect of indoor air pollution on pneumonia in children under 5 in low- and middle-income countries: a systematic review of evidence

Abstract:
Exposure to indoor air pollution increases the risk of pneumonia in children, accounting for about a million deaths globally. This study investigates the individual effect of solid fuel, carbon monoxide (CO), black carbon (BC) and particulate matter (PM2.5) on pneumonia in children under 5 in low- and middle-income countries. A systematic review was conducted to identify peer-reviewed and grey full-text documents without restrictions to study design, language or year of publication using nine databases (Embase, PubMed, EBSCO/CINAHL, Scopus, Web of Knowledge, WHO Library Database (WHOLIS), Integrated Regional Information Networks (IRIN), the World Meteorological Organization (WMO)-WHO and Intergovernmental Panel on Climate Change (IPCC). Exposure to solid fuel use showed a significant association to childhood pneumonia. Exposure to CO showed no association to childhood pneumonia. PM2.5 did not show any association when physically measured, whilst eight studies that used solid fuel as a proxy for PM2.5 all reported significant associations. This review highlights the need to standardise measurement of exposure and outcome variables when investigating the effect of air pollution on pneumonia in children under 5. Future studies should account for BC, PM1 and the interaction between indoor and outdoor pollution and its cumulative impact on childhood pneumonia.

Author(s): Adaji Enenoma Emmanuel, Ekezie Winifred; Clifford Michael; Phalkey Revati;

Journal: Environmental Science and Pollution Research

Item is: Included

ID: 90541902

Imported ID: 88

Year: 2019

ISSN: 1814-7499

Short Title: Adaji (2019)

Pages: 3208-3225
<table>
<thead>
<tr>
<th>Code</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Educational Interventions</td>
<td>4</td>
</tr>
<tr>
<td>Evidence-based Intergenerational</td>
<td>3</td>
</tr>
<tr>
<td>Intergenerational Contact</td>
<td>2</td>
</tr>
<tr>
<td>Intergenerational Interactions</td>
<td>6</td>
</tr>
<tr>
<td>Older People</td>
<td>7</td>
</tr>
<tr>
<td>Paper Presents a Systematic Literature Review</td>
<td>2</td>
</tr>
<tr>
<td>Physical Activity</td>
<td>4</td>
</tr>
</tbody>
</table>
Recommendations for Data Extraction/Coding/Charting

Limit data extraction to only the most important data fields relevant to address the review question

GENERALISABILITY / COMPREHENSIVENESS

Early and continuing engagement of the requester and any other relevant knowledge user.
Reporting Findings…Rapidly

- Author familiarity with the software
- Plan with your KU, commissioner, and team in advance.
Tools to support creation of visuals during reporting

- 44% Qualitative
- 26% Mixed or multi-methods
- 11% Quantitative

Pollock et al ‘23
Health impact assessment and climate change: A scoping review

Priska Ammann*ab, Dominik Dietler*ab, Mirko S. Winklerab

* Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland
ab University of Basel, F.B. Med, CH-4003 Basel, Switzerland
Tools to support generation of visuals *(Pollock et al '23)*

Google Sheets (Alphabet Inc., California, USA),
Microsoft Excel (Redmond, Washington, USA)
NVivo (QSR International, United Kingdom)
Microsoft Power BI or Tableau (Salesforce, California, USA)
EPPI-Mapper (Digital Solution Foundry and EPPI-Centre, London, UK)
EndNote (Clarivate Analytics, PA, USA)
R Shiny
To Conclude

• Scoping, mapping reviews and EGMs – are not quicker than other types of ES
• Time spent on question formulation may save time later
• Communicate often with your commissioners
• Ensure that methods are clearly communicated, with their consequences for the generalisability and trustworthiness of the findings made clear
Thank you for listening

Fiona.campbell1@ncl.ac.uk
@FionaBell19
References

1. EPPI-Reviewer: Thomas J, Graziosi S, Brunton J, Ghouze Z, O'Driscoll P, Bond M, Koryakina A (2022) EPPI-Reviewer: advanced software for systematic reviews, maps and evidence synthesis. EPPI Centre, UCL Social Research Institute, University College London [program].

