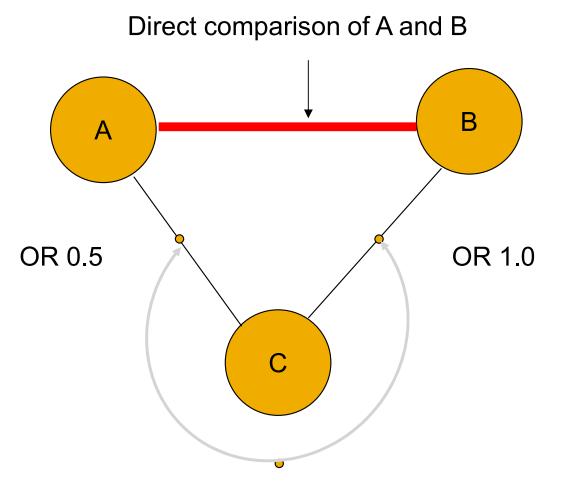
Interpreting results of network meta-analyses: GRADE's minimally contextualized approach

### Gordon Guyatt McMaster University



## First, Questions for you

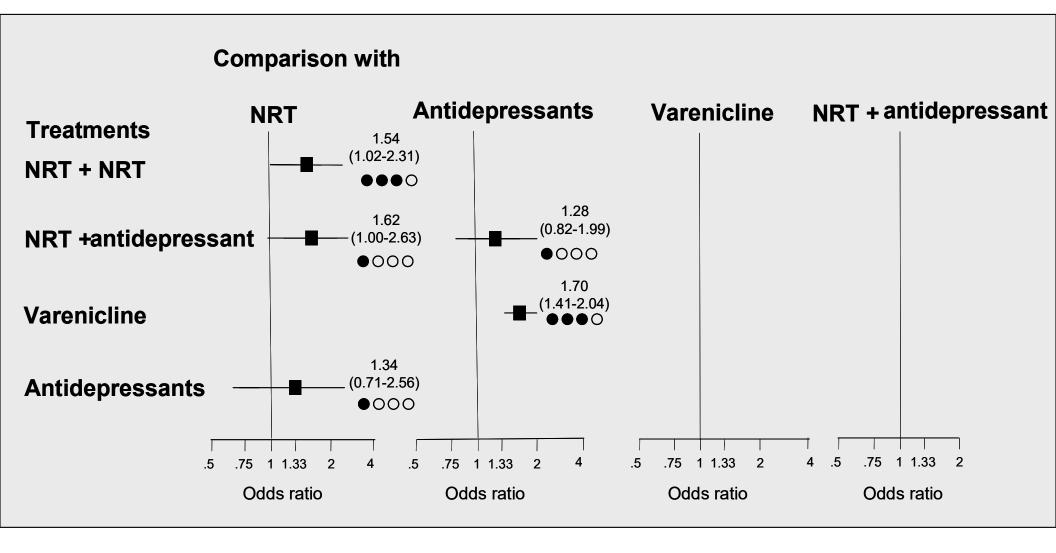
- How familiar are you with GRADE's approach to rating of certainty of evidence in pairwise MA?
- How familiar are you with the basic principles of NMA?
- Have you looked at this paper?

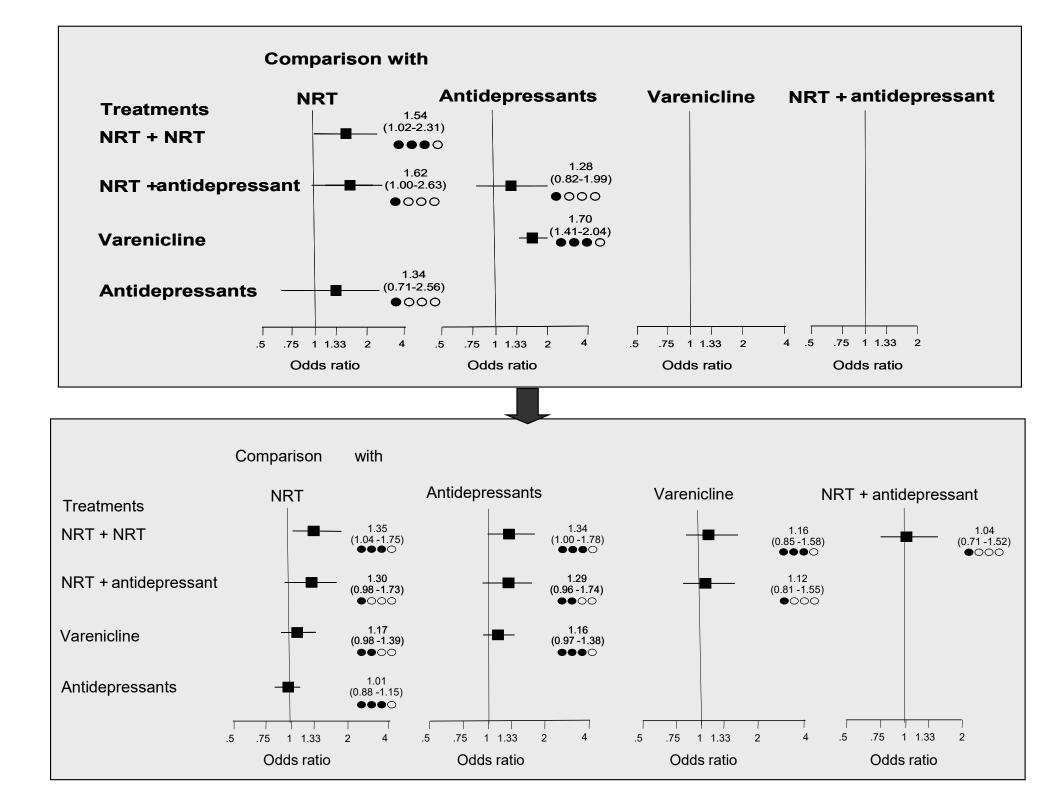

GRADE approach to drawing conclusions from a network meta-analysis using a minimally contextualised framework

Romina Brignardello-Petersen,<sup>1</sup> Ivan D Florez,<sup>1,2</sup> Ariel Izcovich,<sup>3</sup> Nancy Santesso,<sup>1</sup> Glen Hazlewood,<sup>4</sup> Waleed Alhazanni,<sup>1</sup> Juan José Yepes-Nuñez,<sup>5</sup> George Tomlinson,<sup>6,7</sup> Holger J Schünemann,<sup>1</sup> Gordon H Guyatt,<sup>1</sup> on behalf of the GRADE working group

## **Quality/Certainty/Confidence criteria**

| Study Design          | Confidence in estimates | Lower if                                        | Higher if                                                                  |
|-----------------------|-------------------------|-------------------------------------------------|----------------------------------------------------------------------------|
| Randomized trials     | High                    | Risk of bias<br>-1 Serious<br>-2 Very serious   | Large Effect<br>+ 1 Large<br>+ 1 Very large                                |
|                       | Moderate                | Inconsistency<br>-1 Serious<br>-2 Very serious  | Dose response<br>+1 Evidence of a gradient<br>All plausible confounding    |
| Observational studies | Low                     | Indirectness<br>-1 Serious<br>-2 Very serious   | +1 Would reduce a<br>demonstrated effect or<br>+1 would suggest a spurious |
|                       | Very Low                | Imprecision<br>-1 Serious<br>-2 Very serious    | effect when results show no<br>effect                                      |
|                       |                         | Publication bias<br>-1 Likely<br>-2 Very likely |                                                                            |


## **Indirect Comparisons**




Which is a better treatment A or B?

What is your best guess as to OR for A versus B

### Network Meta-analysis Case Study: Which Approach to Nicotine Addiction Works Best





#### Evaluating the Quality of Evidence from a Network Meta-Analysis

#### Georgia Salanti<sup>1</sup>, Cinzia Del Giovane<sup>2</sup>, Anna Chaimani<sup>1</sup>, Deborah M. Caldwell<sup>3</sup>, Julian P. T. Higgins<sup>3,4</sup>\*

 Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece, 2 Statistics Unit, Department of Clinical and Diagnostic Medicine and Public Health, University of Modena and Reggio Emilia, Modena, Italy, 3 School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom, 4 Centre for Reviews and Dissemination, University of York, York, United Kingdom

#### Abstract

Systematic reviews that collate data about the relative effects of multiple interventions via network meta-analysis are highly informative for decision-making purposes. A network meta-analysis provides two types of findings for a specific outcome: the relative treatment effect for all pairwise comparisons, and a ranking of the treatments. It is important to consider the confidence with which these two types of results can enable clinicians, policy makers and patients to make informed decisions. We propose an approach to determining confidence in the output of a network meta-analysis. Our proposed approach is based on methodology developed by the Grading of Recommendations Assessment, Development and Evaluation (GRADE) Working Group for pairwise meta-analyses. The suggested framework for evaluating a network meta-analysis acknowledges (i) the key role of indirect comparisons (ii) the contributions of each piece of direct evidence to the network meta-analysis; and (iv) the possibility of disagreement between direct evidence and indirect evidence. We apply our proposed strategy to a systematic review comparing topical antibiotics without steroids for chronically discharging ears with underlying eardrum perforations. The proposed framework can be used to determine confidence in the results from a network meta-analysis. Judgements about evidence from a network meta-analysis can be different from those made about evidence from pairwise meta-analyses.

#### PLOS ONE Received January 13, 2014; Accepted May 18, 2014; Published July 3, 2014



|        |   |    | Ó |
|--------|---|----|---|
| the    | 1 | 11 | Π |
| ci ici | - |    | υ |

BMJ 2014;349:g5630 doi: 10.1136/bmj.g5630 (Published 24 September 2014)

chi tr antes

#### Page 1 of 10

#### **RESEARCH METHODS & REPORTING**

#### A GRADE Working Group approach for rating the quality of treatment effect estimates from network meta-analysis

Network meta-analysis (NMA), combining direct and indirect comparisons, is increasingly being used to examine the comparative effectiveness of medical interventions. Minimal guidance exists on how to rate the quality of evidence supporting treatment effect estimates obtained from NMA. We present a four-step approach to rate the quality of evidence in each of the direct, indirect, and NMA estimates based on methods developed by the GRADE working group. Using an example of a published NMA, we show that the quality of evidence supporting NMA estimates varies from high to very low across comparisons, and that quality ratings given to a whole network are uninformative and likely to mislead.

Milo A Puhan<sup>1</sup>, Holger J Schünemann<sup>2</sup>, Mohammad Hassan Murad<sup>3</sup>, Tianjing Li<sup>4</sup>, Romina Brignardello-Petersen<sup>5</sup>, Jasvinder A Singh<sup>6</sup>, Alfons G Kessels<sup>7</sup>, Gordon H Guyatt<sup>2</sup>, for the GRADE Working Group

| (        |
|----------|
| HIGH     |
| MODERATE |
| LOW      |
| VERY LOW |





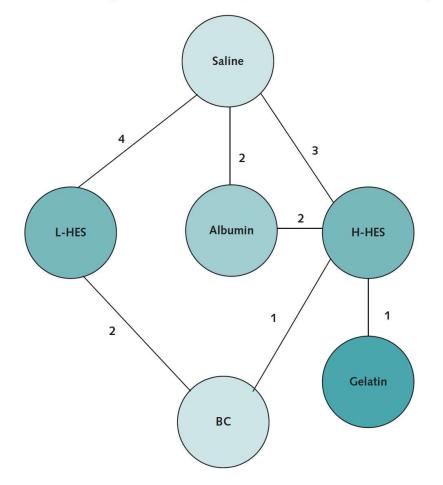
Journal of Clinical Epidemiology 93 (2018) 36-44

Journal of Clinical Epidemiology

#### Advances in the GRADE approach to rate the certainty in estimates from a network meta-analysis

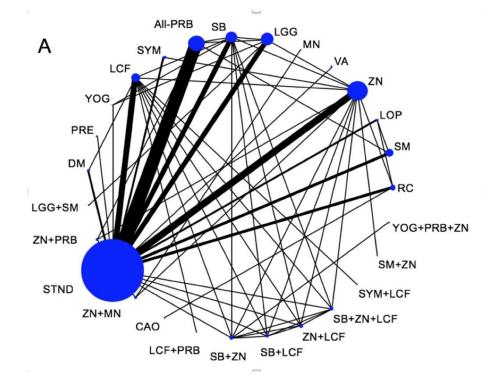
Romina Brignardello-Petersen<sup>a,b</sup>, Ashley Bonner<sup>a</sup>, Paul E. Alexander<sup>a,c</sup>, Reed A. Siemieniuk<sup>a,d</sup>, Toshi A. Furukawa<sup>e,f</sup>, Bram Rochwerg<sup>a,g</sup>, Glen S. Hazlewood<sup>h,i</sup>, Waleed Alhazzani<sup>a,g</sup>, Reem A. Mustafa<sup>a,j</sup>, M. Hassan Murad<sup>k</sup>, Milo A. Puhan<sup>1,m</sup>, Holger J. Schünemann<sup>a</sup>, Gordon H. Guyatt<sup>a,\*</sup>, For the GRADE Working Group




#### **Annals of Internal Medicine**

#### Review

#### **Fluid Resuscitation in Sepsis**


#### A Systematic Review and Network Meta-analysis

Bram Rochwerg, MD; Waleed Alhazzani, MD; Anees Sindi, MD; Diane Heels-Ansdell, MSc; Lehana Thabane, PhD; Alison Fox-Robichaud, MD; Lawrence Mbuagbaw, MSc; Wojciech Szczeklik, MD; Fayez Alshamsi, MD; Sultan Altayyar, MD; Wang-Chun Ip, MD; Guowei Li, MSc; Michael Wang, MD; Anna Włudarczyk, MD; Qi Zhou, PhD; Gordon H. Guyatt, MD; Deborah J. Cook, MD; Roman Jaeschke, MD; and Djillali Annane, MD, PhD, for the Fluids in Sepsis and Septic Shock Group

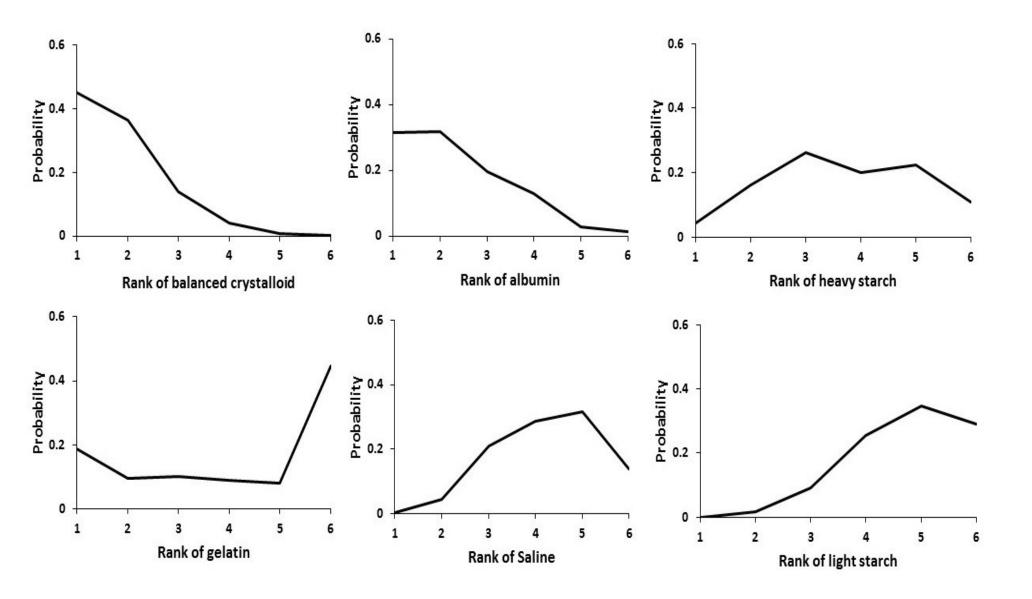


BC = balanced crystalloid; H-HES = high-molecular-weight hydroxyethyl starch; L-HES = low-molecular-weight hydroxyethyl starch.

#### Diarrhea duration



- 27 interventions
- 138 studies
- 20,256 participants
- 62 direct comparisons
- 351 pairwise comparisons


#### Table 4. NMA Results of 6-Node Analysis, Including Confidence Assessments

| Comparison                       | Trials With Direct<br>Comparisons, n | Direct Estimate (95% CI);<br>Quality of Evidence | Indirect Estimate (95% Crl);<br>Quality of Evidence | NMA Estimate (95% Crl)*;<br>Quality of Evidence |
|----------------------------------|--------------------------------------|--------------------------------------------------|-----------------------------------------------------|-------------------------------------------------|
| L-HES vs. saline                 | 4                                    | 1.07 (0.89-1.29); Moderatet                      | 0.59 (0.25-1.35); Very low1+§                       | 1.04 (0.87-1.25); Moderate                      |
| H-HES vs. saline                 | 3                                    | 0.64 (0.30-1.37); Moderatet                      | 1.13 (0.71-1.80); Very low ++                       | 0.95 (0.64-1.41); Moderate                      |
| Albumin vs. saline               | 2                                    | 0.81 (0.64-1.03); Moderate†                      | 0.96 (0.14-6.31); Very low‡                         | 0.82 (0.65-1.04); Moderate                      |
| Balanced crystalloid vs. saline  | 0                                    |                                                  | 0.78 (0.58-1.05); Low†‡                             | 0.78 (0.58-1.05); Low                           |
| Gelatin vs. saline               | 0                                    | -                                                | 1.04 (0.46-2.32); Very low ++                       | 1.04 (0.46-2.32); Very low                      |
| H-HES vs. L-HES                  | 0                                    | <u></u>                                          | 0.91 (0.63-1.33); Low1‡                             | 0.91 (0.63-1.33); Low                           |
| Albumin vs. L-HES                | 0                                    | -                                                | 0.79 (0.59-1.06); Low†‡                             | 0.79 (0.59-1.06); Low                           |
| Balanced crystalloid vs. L-HES   | 2                                    | 0.80 (0.61-1.04); Moderate§                      | 0.44 (0.19-0.97); Moderate‡                         | 0.75 (0.58-0.97); Moderate                      |
| Gelatin vs. L-HES                | 0                                    | -                                                | 1.00 (0.44-2.21); Very low1+                        | 1.00 (0.44-2.21); Very low                      |
| Albumin vs. H-HES                | 2                                    | 1.40 (0.35-5.56); Low                            | 0.83 (0.52-1.33); Low++                             | 0.87 (0.55-1.36); Low                           |
| Balanced crystalloid vs. H-HES   | 1                                    | 0.74 (0.52-1.05); Moderate†                      | 1.35 (0.63-2.92); Very low‡                         | 0.82 (0.60-1.13); Moderate                      |
| Gelatin vs. H-HES                | 1                                    | 1.09 (0.55-2.19); Low                            | 1                                                   | 1.10 (0.54-2.21); Low                           |
| Balanced crystalloid vs. albumin | 0                                    | -                                                | 0.95 (0.65-1.38); Very low1+                        | 0.95 (0.65-1.38); Very low                      |
| Gelatin vs. albumin              | 0                                    | -                                                | 1.26 (0.55-2.90); Very low#                         | 1.26 (0.55-2.90); Very low                      |
| Gelatin vs. balanced crystalloid | 0                                    | -                                                | 1.34 (0.61-2.89); Very low‡                         | 1.34 (0.61–2.89); Very low                      |

How to decide what is best?

Familiarity with sucra?

Sucra good solution?



Surface under the cumulative ranking curve (SUCRA)

| Rank | Treatment            | SUCRA* |
|------|----------------------|--------|
| 1    | Balanced crystalloid | 84.1%  |
| 2    | Albumin              | 74.5%  |
| 3    | Heavy starch         | 45.4%  |
| 4    | Gelatin              | 37.7%  |
| 5    | Saline               | 34.2%  |
| 6    | Light starch         | 24.0%  |

## **Reasons to be skeptical**

- Chance may explain the differences
  - o.8 looks a lot bigger than o.4 but...
- What is the magnitude of difference?
   o.8 looks a lot bigger than o.4 but...
- Quality of evidence may be low for higher Sucra

#### Table 4. NMA Results of 6-Node Analysis, Including Confidence Assessments

| Comparison                       | Trials With Direct<br>Comparisons, n | Direct Estimate (95% CI);<br>Quality of Evidence | Indirect Estimate (95% Crl);<br>Quality of Evidence | NMA Estimate (95% Crl)*;<br>Quality of Evidence |
|----------------------------------|--------------------------------------|--------------------------------------------------|-----------------------------------------------------|-------------------------------------------------|
| L-HES vs. saline                 | 4                                    | 1.07 (0.89-1.29); Moderatet                      | 0.59 (0.25-1.35); Very low1+§                       | 1.04 (0.87-1.25); Moderate                      |
| H-HES vs. saline                 | 3                                    | 0.64 (0.30-1.37); Moderate1                      | 1.13 (0.71-1.80); Very low ++                       | 0.95 (0.64-1.41); Moderate                      |
| Albumin vs. saline               | 2                                    | 0.81 (0.64-1.03); Moderate†                      | 0.96 (0.14-6.31); Very low‡                         | 0.82 (0.65-1.04); Moderate                      |
| Balanced crystalloid vs. saline  | 0                                    | -                                                | 0.78 (0.58-1.05); Low†‡                             | 0.78 (0.58-1.05); Low                           |
| Gelatin vs. saline               | 0                                    | -                                                | 1.04 (0.46-2.32); Very low†‡                        | 1.04 (0.46-2.32); Very low                      |
| H-HES vs. L-HES                  | 0                                    | 14 <u>116</u> 7                                  | 0.91 (0.63-1.33); Low1+                             | 0.91 (0.63-1.33); Low                           |
| Albumin vs. L-HES                | 0                                    | -                                                | 0.79 (0.59-1.06); Low1‡                             | 0.79 (0.59-1.06); Low                           |
| Balanced crystalloid vs. L-HES   | 2                                    | 0.80 (0.61-1.04); Moderate§                      | 0.44 (0.19-0.97); Moderate‡                         | 0.75 (0.58-0.97); Moderate                      |
| Gelatin vs. L-HES                | 0                                    | -                                                | 1.00 (0.44-2.21); Very low†‡                        | 1.00 (0.44-2.21); Very low                      |
| Albumin vs. H-HES                | 2                                    | 1.40 (0.35-5.56); Low                            | 0.83 (0.52-1.33); Low1+                             | 0.87 (0.55-1.36); Low                           |
| Balanced crystalloid vs. H-HES   | 1                                    | 0.74 (0.52-1.05); Moderate†                      | 1.35 (0.63-2.92); Very low‡                         | 0.82 (0.60-1.13); Moderate                      |
| Gelatin vs. H-HES                | 1                                    | 1.09 (0.55–2.19); Low                            | -                                                   | 1.10 (0.54-2.21); Low                           |
| Balanced crystalloid vs. albumin | 0                                    |                                                  | 0.95 (0.65-1.38); Very low1+                        | 0.95 (0.65-1.38); Very low                      |
| Gelatin vs. albumin              | 0                                    | -                                                | 1.26 (0.55-2.90); Very low #                        | 1.26 (0.55-2.90); Very low                      |
| Gelatin vs. balanced crystalloid | 0                                    |                                                  | 1.34 (0.61-2.89); Very low‡                         | 1.34 (0.61-2.89); Very low                      |

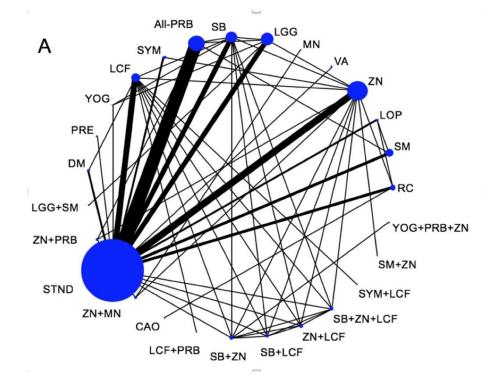
### Objective

• To provide guidance on how to draw conclusions regarding which treatments are more likely to be superior or inferior to others considering the estimates of effects, QoE, and rankings

### Guiding principles

Based on our experience, very seldom, if ever, will an NMA establish a single treatment clearly superior to all others

1. We should consider **categories of interventions**,


e.g., those **clearly superior**; those with **intermediate effectiveness**; and those that are **inferior** 

2. The judgements that place interventions in categories will rely on the **estimates of effect**, and the **certainty of evidence** supporting those estimates, and the rankings

#### Approach: Example

- Network Meta-Analysis of the interventions for Acute Diarrhea and Gastroenteritis in Children (Florez et al. 2018, Submitted for publication)
- **Population**: Children with acute diarrhea and gastroenteritis
- Interventions/Comparisons: Pharmacological and nutritional interventions, including Placebo and standard treatment
- Main Outcome: Diarrhea Duration in hours (mean difference): Negative value, means a reduction in the duration of the diarrhea in hours; Positive value means an increase in the duration of the diarrhea in hours

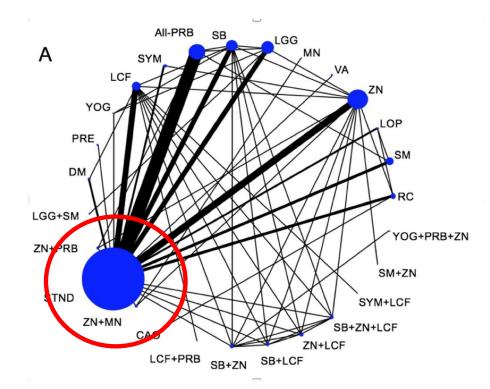
#### Diarrhea duration



- 27 interventions
- 138 studies
- 20,256 participants
- 62 direct comparisons
- 351 pairwise comparisons

### II. Approach

- 1. Choice of reference treatment and a decision threshold
- 2. First classification based on comparison with reference
- 3. Second classification based on pairwise comparisons
- 4. Separation in 2 main groups according to quality of evidence
- 5. Checking consistency with pairwise comparisons and rankings


#### II. Steps

#### **1.** Choice of reference treatment and decision threshold

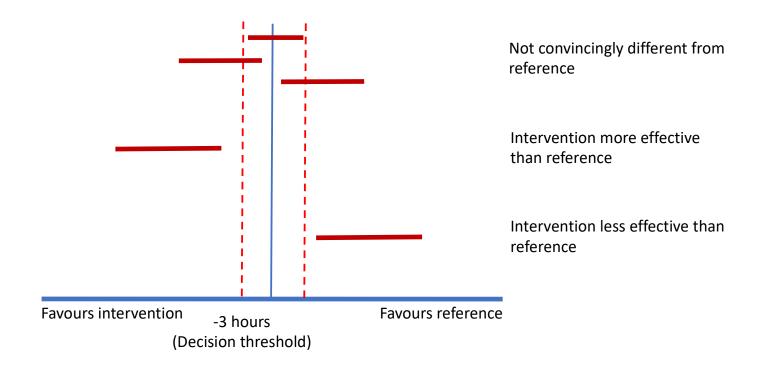
- 2. First classification based on comparison with reference
- 3. Second classification based on pairwise comparisons
- 4. Separation in 2 main groups according to quality of evidence
- 5. Checking consistency with pairwise comparisons and rankings

#### 1. Reference and decision threshold

- Reference should be the treatment most connected to others in the network
  - More direct evidence -> more likely to be higher quality
  - More appropriate to make conclusions based on higher quality
- If more than one treatment highly connected
  - Choose the one for which there is the highest quality when compared to others
- Nice if it's placebo/standard care



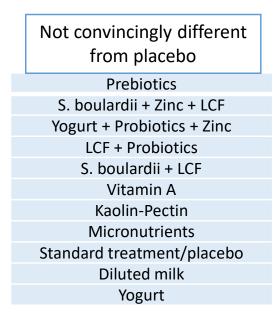
#### 1. Reference and decision threshold


- Decision threshold value that represents reasonablec criterion to claim one treatment is better than another
  - Chance unlikely explanation (Confidence interval excludes null)
  - Difference greater than the MID (CI excludes MID)
    - Should be established considering absolute effects
- Original paper, this presentation, threshold exclude chance
- In BMJ paper, difference 3 hours of diarrhea threshold

#### II. Steps

- 1. Choice of reference treatment and decision threshold
- 2. First classification based on comparison with reference
- 3. Second classification based on pairwise comparisons
- 4. Separation in 2 main groups according to quality of evidence
- 5. Checking consistency with pairwise comparisons and rankings

## 2. First classification based on the comparison with the reference


• Use CI of relative estimate comparing each treatment versus reference



## 2. First classification based on the comparison with the reference

- Use CI comparing each treatment versus reference
- Classify based on decision threshold
  - Kaolin pectin vs placebo -5.32 (-33.76; 22.83) → Kaolin pectin not different than placebo
  - Symbiotics vs placebo -26.26 (-36.14; -16.22) → Symbiotics better than placebo (category 1)

## 2. First classification based on the comparison with the reference

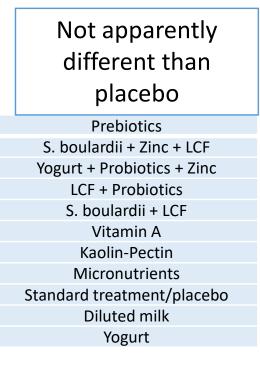


| Category 1: better than placebo |
|---------------------------------|
| S. boulardii + Zinc             |
| Smectite + Zinc                 |
| LGG + Smectite                  |
| Zinc + Probiotics               |
| Symbiotics                      |
| Zinc + LCF                      |
| Zinc (All)                      |
| Loperamide                      |
| Zinc + Micronutrients           |
| Symbiotics + LCF                |
| Smectite                        |
| LGG (All)                       |
| All Probiotics                  |
| Racecadotril                    |
| S. boulardii                    |
| LCF                             |

#### II. Steps

- 1. Choice of reference treatment and decision threshold
- 2. First classification based on comparison with reference
- 3. Second classification based on pairwise comparisons
- 4. Separation in 2 main groups according to quality of evidence
- 5. Checking consistency with pairwise comparisons and rankings

## 3. Second classification based on pairwise comparisons


- Aim to differentiate among those different than reference (category 1)
- If one treatment is better than any of the others, it moves up

| Comparison                         | Estimate                  | Decision                    |
|------------------------------------|---------------------------|-----------------------------|
| All probiotics vs.<br>racecadotril | -2.18<br>(-10.66; 6.32)   | Stays in the same group     |
| Zinc+ probiotics vs. zinc          | -10.96<br>(-21.65; -0.39) | Zinc + probiotics moves up  |
| Zinc+ micronutrients vs.<br>zinc   | 0.63<br>(-13.2: 14.56)    | Stays in the same group     |
| S.Boulardii + Zinc vs zinc         | -21.55<br>(-33.66; -9.38) | S.Boulardii + Zinc moves up |

Category 1: better than placebo

S. boulardii + Zinc Smectite + Zinc LGG + Smectite Zinc + Probiotics **Symbiotics** Zinc + LCF Zinc (All) Loperamide Zinc + Micronutrients Symbiotics + LCF Smectite LGG (All) All Probiotics Racecadotril S. boulardii Yogurt LCF

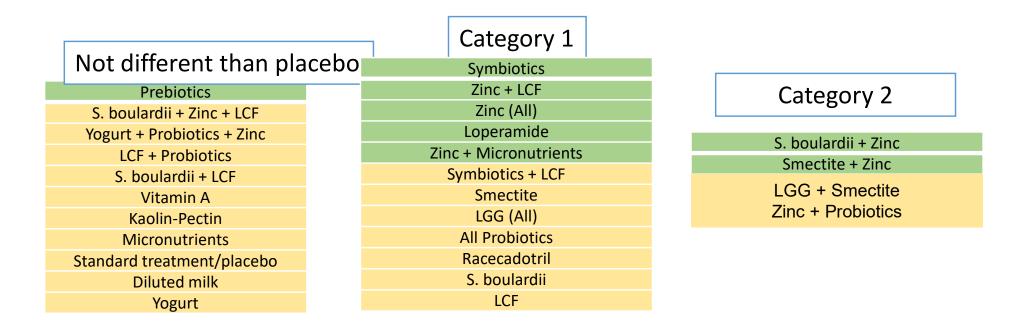
## 3. Second classification based on pairwise comparisons



Category 1SymbioticsZinc + LCFZinc (All)LoperamideZinc + MicronutrientsSymbiotics + LCFSmectiteLGG (All)All ProbioticsRacecadotrilS. boulardiiLCF

#### Category 2

S. boulardii + Zinc Smectite + Zinc LGG + Smectite Zinc + Probiotics


#### II. Steps

- 1. Choice of reference treatment and decision threshold
- 2. First classification based on comparison with reference
- 3. Second classification based on pairwise comparisons
- 4. Separation in 2 main groups according to quality of evidence
- 5. Checking consistency with pairwise comparisons and rankings

### 4. Separation in two groups based on QoE

- QoE when compared to the reference treatment
- High/ moderate vs low/very low

#### 4. Separation in two groups based on QoE



#### II. Steps

- 1. Choice of reference treatment and acceptable effect size
- 2. First classification based on comparison with reference
- 3. Second classification based on pairwise comparisons
- 4. Separation in 2 main groups according to quality of evidence
- 5. Checking consistency with pairwise comparisons and rankings

## 5. Checking consistency with pairwise comparisons and rankings

- Strong evidence contradicting classification would be
  - Relative effect shows that a treatment is better than another classified as worse, with high/moderate quality, AND/OR
  - Ranking shows that a treatment should have been classified in a better category than it is
- Decision based on a case-by-case analysis
- Have not seen a situation like this

| Certainty on the<br>evidence                            | Classification                                                                              | Intervention                                             | Intervention vs.<br>Standard/placebo<br>MD (95%CrI) | SUCRA        |
|---------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|--------------|
|                                                         | Category 2:<br>Among the most effective                                                     | S. boulardii + Zinc (M)<br>Smectite + Zinc (M)           | -39.45 (-52.5; -26.7)<br>-35.63 (-57.6; -13.2)      | 0.92<br>0.88 |
| High Certainty (Moderate-                               | Category 1:<br>Inferior to the most effective / superior                                    | Symbiotics (H)                                           | -26.26 (-36.1; -16.2)<br>-21.37 (-36.5; -6.1)       | 0.77 0.61    |
| to High-quality evidence)                               | to the least effective                                                                      | Zinc (All) (M)<br>Loperamide (M)                         | -18.38 (-23.4; -13.5)<br>-17.79; (-30.4; -5.7)      | 0.50<br>0.46 |
|                                                         | Category 0:                                                                                 | Zinc + Micronutrients (M)<br>Prebiotics (M)              | -17.76 (-31.8; -4.1)<br>-15.32 (-42.8; 12.0)        | 0.46<br>0.38 |
|                                                         | Among the least effective<br>Category 2:<br>May be among the most effective                 | LGG + Smectite (VL)                                      | -51.08 (-64.3; -37.9)                               | 1.00         |
|                                                         | Category 1:<br>May be inferior to the most effective /<br>superior than the least effective | Zinc + Probiotics (L)<br>Symbiotics + LCF (VL)           | -29.39 (-40.3; -18.6)<br>-32.11 (-53.0; -11.3)      | 0.81<br>0.85 |
|                                                         |                                                                                             | Smectite (VL)<br>LGG (All) (L)                           | -23.90 (-30.8; -17.0)<br>-22.74 (-28.8; -16.7)      | 0.69<br>0.65 |
|                                                         |                                                                                             | All Probiotics (L)<br>Racecadotril (L)                   | -19.36 (-23.7; -15.1)<br>-17.19 (-24.7; -9.8)       | 0.54<br>0.46 |
| Low Certainty<br>(Low- to Very Low-quality<br>evidence) |                                                                                             | S. boulardii (L)<br>LCF (VL)                             | -16.48 (-23.3; -9.7)<br>-12.50 (-19.0; -6.0)        | 0.42<br>0.31 |
|                                                         | Category 0:<br>May be among the least effective                                             | S. boulardii + Zinc + LCF (L)<br>Yogurt (VL)             | -16.74 (-36.1; 2.7)<br>-16.43 (-30.5; -2.1)         | 0.42<br>0.42 |
|                                                         |                                                                                             | Yogurt + Probiotics + Zinc (VL)<br>LCF + Probiotics (VL) | -15.63 (-56.8; 26.6)<br>-13.27 (-36.0; 9.2)         | 0.38<br>0.31 |
|                                                         |                                                                                             | S. boulardii + LCF (VL)<br>Vitamin A (VL)                | -12.32 (-30.0; 6.0)<br>-5.95 (-21.4; 9.3)           | 0.27<br>0.19 |
|                                                         |                                                                                             | Kaolin-Pectin (VL)<br>Micronutrients (L)                 | -5.32 (-33.8; 22.8)<br>-0.68 (-33.3; 32.8)          | 0.15<br>0.08 |
|                                                         |                                                                                             | Standard treatment/placebo<br>Diluted milk (VL)          | 3.02 (-14.3; 8.4)                                   | 0.08         |

## What about Harms?

- For harms same process, but opposite ratings
- Best would be no worse than reference if placebo/standard care
  - If alternative treatment best could be less harms than reference
- Inferior to best but not worst would be more harms than reference
  - Category 1
- Worst would be more harms than at least 1 category 1

# **BMJ Open** Development and design validation of a novel network meta-analysis presentation tool for multiple outcomes: a qualitative descriptive study

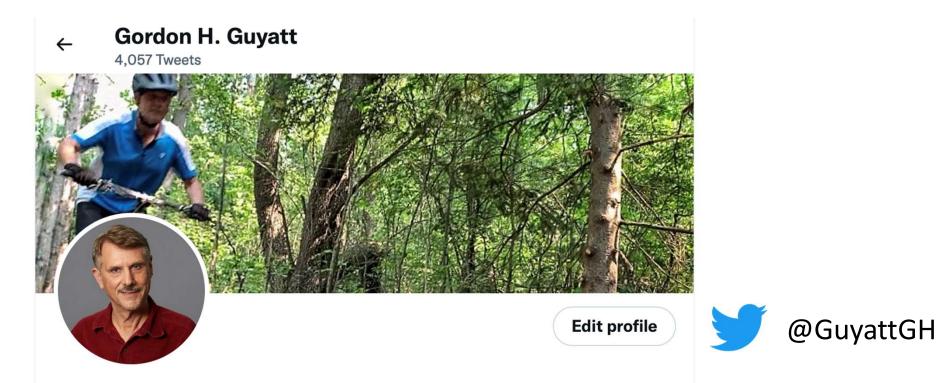
Mark R Phillips <sup>(i)</sup>, <sup>1</sup> Behnam Sadeghirad <sup>(i)</sup>, <sup>1,2</sup> Jason W Busse <sup>(i)</sup>, <sup>1,2</sup> Romina Brignardello-Petersen, <sup>1</sup> Carlos A Cuello-Garcia, <sup>1</sup> Fernando Kenji Nampo, <sup>3</sup> Yu Jia Guo, <sup>4</sup> Sofia Bzovsky, <sup>5</sup> Raveendhara R Bannuru, <sup>6</sup> Lehana Thabane <sup>(i)</sup>, <sup>1,7</sup> Mohit Bhandari, <sup>1,8</sup> Gordon H Guyatt<sup>1</sup>

- Qualitative study develop optimal presentation multiple outcomes
- Seven-member steering committee
  - Oversaw process
- Choice of NMA:
  - Variability certainty/magnitude; benefits/harms; continuous/binary; minimum 5 intervention, five outcomes
- Management of acute musculoskeletal injuries in ER

## User testing

- Developed two initial possible formats
- Feedback on initial in two large group sessions
  - Methodologists, graduate students, statisticians, pain researchers
- Modified formats and conducted one-to-one interviews
  - 20 Academic and non clinicians, 3 residents, 3 methodologists
  - Four rounds of interviews, revision after each

|                         | BENEFIT OUTCOMES       |                                                                                                                 |                      |                           | ADVERSE EVENTS     |                    |                    |                      |  |
|-------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------|---------------------------|--------------------|--------------------|--------------------|----------------------|--|
| Intervention            | Pain ≤ 2 h<br>post-tx  | The second se | Physical<br>function | Treatment<br>satisfaction | Symptom<br>relief  | GI-related<br>AE's | Neurologic<br>AE's | Dermatologic<br>AE's |  |
|                         | MD (95% CI)            | MD (95% CI)                                                                                                     | MD (95% CI)          | OR (95% CI)               | OR (95% CI)        | OR (95% CI)        | OR (95% CI)        | OR (95% CI)          |  |
| Topical NSAID           | -1.02                  | -1.08                                                                                                           | 1.66                 | 5.20                      | 6.39               | 1.14               | 1.18               | 0.78                 |  |
| Topical NSAID           | (-1.64,-0.39)          | (-1.40,-0.75)                                                                                                   | (1.16,2.16)          | (2.03,13.33)              | (3.48,11.75)       | (0.65,2.01)        | (0.51,2.74)        | (0.52,1.15)          |  |
| Oral NSAID              | -0.93                  | -0.99                                                                                                           | 0.73                 | 3.24                      | 3.10               | 1.77               | 1.02               | 1.33                 |  |
| OrarinsAlD              | (-1.49,-0.37)          | (-1.46,-0.52)                                                                                                   | (0.17,1.30)          | (0.43,24.70)              | (1.39,6.91)        | (1.33,2.35)        | (0.65,1.59)        | (0.43,4.09)          |  |
| Acetaminophen           | -1.03                  | -1.07                                                                                                           | 0.90                 | 2.43                      | 2.73 (0.90,8.27)   | 0.50               | (                  |                      |  |
| Acetaminophen           | (-1.82,-0.24)          | (-1.89,-0.24)                                                                                                   | (-0.27,2.61)         | (0.18,32.70)              | 2.73 (0.30,0.27)   | (0.06,4.38)        | 1.51               |                      |  |
| Acetaminophen +         | -1.11                  | -1.09                                                                                                           |                      | 3.45                      | 3.72               |                    |                    |                      |  |
| Diclofenac              | (-2.00,-0.21)          | (-2.20,0.01)                                                                                                    | -                    | (0.18,66.96)              | (1.02,13.52)       | -                  | -                  | -                    |  |
| Topical NSAID + Menthol | -1.68                  | -0.89                                                                                                           |                      | 27                        | 13.34              | 2.35               | 1.22               | 0.53                 |  |
| Gel                     | (-0.27,-3.09)          | (-2.33,0.54)                                                                                                    | 10                   | 87.5                      | (3.30,53.92)       | (0.04,124.85)      | (0.02,69.98)       | (0.05,6.29)          |  |
| TENC                    | -1.94                  | -1.18                                                                                                           | 0.68                 |                           | 6.00               | 1.25               | 1.12               | 1.18                 |  |
| TENS                    | (-2.90,-0.98)          | (-2.09,-0.28)                                                                                                   | (-0.20,1.57)         |                           | (0.78,46.36)       | (0.14,11.01)       | (0.13,9.98)        | (0.13,11.03)         |  |
|                         | -1.59                  | -2.09                                                                                                           | 1.51                 | 0.50                      | 2.54               | 0.80               | 0.80               | 0.80                 |  |
| Specific acupressure    | (-2.52,-0.66)          | (-3.86,-0.32)                                                                                                   | (0.42,2.61)          | (0.04,6.49)               | (0.52,12.38)       | (0.02,41.67)       | (0.01,42.60)       | (0.01,45.60)         |  |
| Manipulation            | -1.75                  | 0.40                                                                                                            | 0.09                 |                           |                    | 167.71             | 0.50               | 1.41                 |  |
| Manipulation            | (-2.68,-0.81)          | (-1.71,2.51)                                                                                                    | (-1.06,0.87)         |                           | (6.67,4217.10)     | (0.01,31.30)       | (0.03,78.76)       |                      |  |
| Acetaminophen +         | 1997 - Harrison - 1997 | -2.92                                                                                                           |                      |                           | NE 1612 (22) (122) | 0.35               | 540 KA SIX         |                      |  |
| Chlorzoxazone           | 853                    | (-5.41,-0.43)                                                                                                   | 1977<br>2011         | 570                       | 55                 | (0.01,10.59)       | 1990               | 1977)                |  |
| Laser therapy           |                        | -1.04                                                                                                           | 9                    | 000                       | 32.08              | 0.49               | 0.49               | 0.49                 |  |
|                         | -                      | (-2.28,0.19)                                                                                                    | -                    | -                         | (4.93,208.60)      | (0.01,24.85)       | (0.01,25.41)       | (0.01,27.21)         |  |
| Mobilization            |                        | 3.40                                                                                                            | 0.12                 | 2.07                      | 7.99               | 0.93               | 0.93               | 0.93                 |  |
| MODINZACION             |                        | (-0.05,6.85)                                                                                                    | (-0.59,0.83)         | (0.07,58.49)              | (1.29,49.41)       | (0.02,47.12)       | (0.02,48.18)       | (0.02,51.60)         |  |
| Acataminanhan I Oniaid  | -0.52                  | -1.71                                                                                                           |                      | 2.50                      | 1.47               | 5.63               | 3.53               |                      |  |
| Acetaminophen + Opioid  | (-1.47,0.43)           | (-2.97, -0.46)                                                                                                  | 5                    | (0.14,44.86)              | (0.55,3.91)        | (2.84,11.16)       | (1.92,6.49)        | 252                  |  |


|                    | BENEFIT C                                                             | UTCOMES                                                                     | ADVERSE EVENTS                                                         |                                                                                     |  |
|--------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--|
|                    | High/ModerateLow/Very LowCertainty EvidenceCertainty Evidence         |                                                                             | High/Moderate Low/Very<br>Certainty Evidence Certainty Evi             |                                                                                     |  |
| AMONG THE BEST     | Better than placebo<br>and some other<br>interventions                | May be better than<br>placebo and some<br>alternatives                      | bo and some No more harmful than placebo                               |                                                                                     |  |
| INTERMEDIATE       | Better than placebo,<br>but no better than any<br>other interventions | May be better than<br>placebo, but no better<br>than other<br>interventions | More harmful than<br>placebo, but no worse<br>than other interventions | May be more<br>harmful than<br>placebo, but no<br>worse than other<br>interventions |  |
| AMONG THE<br>WORST | No better than placebo                                                | May be no better than<br>placebo                                            | More harmful than<br>placebo and some other<br>interventions           | May be more<br>harmful than<br>placebo and some<br>alternatives                     |  |

|                                  | BENEFIT OUTCOMES       |                                   |                      |                        | ADVERSE EVENTS           |                       |                      |                      |
|----------------------------------|------------------------|-----------------------------------|----------------------|------------------------|--------------------------|-----------------------|----------------------|----------------------|
| Intervention                     | Pain ≤ 2 h<br>post-tx  | Pain 1 to 7 d<br>post-tx          | Physical<br>function | Treatment satisfaction | Symptom<br>relief        | GI-related<br>AE's    | Neurologic<br>AE's   | Dermatologic<br>AE's |
|                                  | MD (95% CI)            | MD (95% CI)                       | MD (95% CI)          | OR (95% CI)            | OR (95% CI)              | OR (95% CI)           | OR (95% CI)          | OR (95% CI)          |
| Topical NSAID                    | -1.02<br>(-1.64,-0.39) | -1.08<br>(-1.40,-0.75)            | 1.66<br>(1.16,2.16)  | 5.20<br>(2.03,13.33)   | 6.39<br>(3.48,11.75)     | 1.14<br>(0.65,2.01)   | 1.18<br>(0.51,2.74)  | 0.78 (0.52,1.15)     |
| Oral NSAID                       | -0.93<br>(-1.49,-0.37) | -0.99<br>(-1.46,-0.52)            | 0.73<br>(0.17,1.30)  | 3.24<br>(0.43,24.70)   | 3.10<br>(1.39,6.91)      | 1.77<br>(1.33,2.35)   | 1.02<br>(0.65,1.59)  | 1.33<br>(0.43,4.09)  |
| Acetaminophen                    | -1.03<br>(-1.82,-0.24) | -1.07<br>(-1.89,-0.24)            | 0.90<br>(-0.27,2.61) | 2.43<br>(0.18,32.70)   | 2.73<br>(0.90,8.27)      | 0.50<br>(0.06,4.38)   |                      | -                    |
| Acetaminophen +<br>Diclofenac    | -1.11<br>(-2.00,-0.21) | -1.0 <del>9</del><br>(-2.20,0.01) | -                    | 3.45<br>(0.18,66.96)   | 3.72<br>(1.02,13.52)     | 94 U                  | 141                  | Э                    |
| Topical NSAID + Menthol<br>Gel   | -1.68<br>(-0.27,-3.09) | -0.89<br>(-2.33,0.54)             |                      | 9                      | 13.34<br>(3.30,53.92)    | 2.35<br>(0.04,124.85) | 1.22<br>(0.02,69.98) | 0.53<br>(0.05,6.29)  |
| TENS                             | -1.94<br>(-2.90,-0.98) | -1.18<br>(-2.09,-0.28)            | 0.68<br>(-0.20,1.57) | 8                      | 6.00<br>(0.78,46.36)     | 1.25<br>(0.14,11.01)  | 1.12<br>(0.13,9.98)  | 1.18<br>(0.13,11.03) |
| Specific acupressure             | -1.59<br>(-2.52,-0.66) | -2.09<br>(-3.86,-0.32)            | 1.51<br>(0.42,2.61)  | 0.50<br>(0.04,5.49)    | 2.54<br>(0.52,12.38)     | 0.80<br>(0.02,41.67)  | 0.80<br>(0.01,42.60) | 0.80<br>(0.01,45.60) |
| Manipulation                     | -1.75<br>(-2.68,-0.81) | 0.40<br>(-1.71,2.51)              | 0.09<br>(-1.06,0.87) | 8                      | 167.71<br>(6.67,4217.10) | 0.50<br>(0.01,31.30)  | 1.41<br>(0.03,78.76) |                      |
| Acetaminophen +<br>Chlorzoxazone | 2                      | -2.92<br>(-5.41,-0.43)            |                      |                        |                          | 0.35<br>(0.01,10.59)  | Đ.                   | 8                    |
| Laser therapy                    | -                      | -1.04<br>(-2.28,0.19)             |                      | i.                     | 32.08<br>(4.93,208.60)   | 0.49<br>(0.01,24.85)  | 0.49<br>(0.01,25.41) | 0.49<br>(0.01,27.21) |
| Mobilization                     |                        | 3.40<br>(-0.05,6.85)              | 0.12<br>(-0.59,0.83) | 2.07<br>(0.07,58.49)   | 7.99<br>(1.29,49.41)     | 0.93<br>(0.02,47.12)  | 0.93<br>(0.02,48.18) | 0.93<br>(0.02,51.60) |
| Acetaminophen + Opioid           | -0.52<br>(-1.47,0.43)  | -1.71<br>(-2.97, -0.46)           | •                    | 2.50<br>(0.14,44.86)   | 1.47<br>(0.55,3.91)      | 5.63<br>(2.84,11.16)  | 3.53<br>(1.92,6.49)  |                      |

|                 | BENEFIT OUTCOMES                                               |                                                                       | ADVERSE EVENTS                                                      |                                                                               |
|-----------------|----------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------|
|                 | High/Moderate<br>Certainty Evidence                            | Low/Very Low<br>Certainty Evidence                                    | High/Moderate<br>Certainty Evidence                                 | Low/Very Low<br>Certainty Evidence                                            |
| AMONG THE BEST  | Better than placebo<br>and some alternatives                   | May be better than<br>placebo and some<br>alternatives                | No more harmful than<br>placebo                                     | May be no more<br>harmful than placebo                                        |
| INTERMEDIATE    | Better than placebo,<br>but no better than<br>any alternatives | May be better than<br>placebo, but no better<br>than any alternatives | More harmful than<br>placebo, but no worse<br>than any alternatives | May be more harmful<br>than placebo, but no<br>worse than any<br>alternatives |
| AMONG THE WORST | No better than<br>placebo                                      | May be no better<br>than placebo                                      | More harmful than<br>placebo and some<br>alternatives               | May be more harmful<br>than placebo and<br>some alternatives                  |

## Lessons Interpreting NMA Results

- If multiple treatments very hard to decide in league tables
  - Worse if multiple outcomes
- SUCRA bad solution to the problems
  - Precision, magnitude and certainty problems
- GRADE classifies among the best, intermediate, among worst
  - Focus on reference, but also intervention/intervention
  - Threshold for different from reference or one another either null or MID
- User tested presentation formats for multiple outcomes



#### Gordon H. Guyatt

@GuyattGH

Promoting use of the best evidence and patient values and preferences to inform optimal clinical and health policy decisions

583 Following 7,194 Followers