

a fully interactive web-application for producing and visualising network meta-analyses

Silvia Metelli

Joint work with Anna Chaimani

Université de Paris, Inserm Research Center of Epidemiology and Statistics, France

Cochrane Learning Live Webinar, 10th February 2022

1 Introduction & overview of NMAstudio functionalities

Live demonstration: built-in data and example of user data set

Final considerations and forthcoming updates

INTRO

A web app to enhance and facilitate interpretation of Network Meta Analysis (NMA)

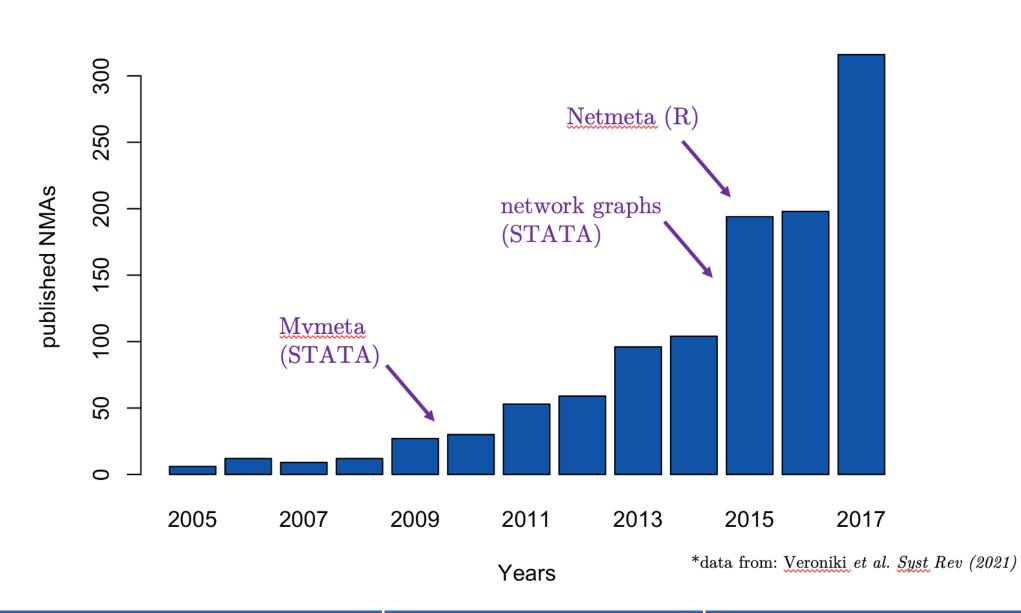
Core idea: 'interactivity' between the typical NMA network plot and the NMA outputs

- 1. Users upload data and interact with a network plot clicking treatments or comparisons
- 2. Based on their selection, different outputs and information are displayed

A web app to enhance and facilitate interpretation of Network Meta Analysis (NMA)

Core idea: 'interactivity' between the typical NMA network plot and the NMA outputs

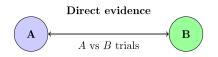
- 1. Users upload data and interact with a network plot clicking treatments or comparisons
- 2. Based on their selection, different outputs and information are displayed

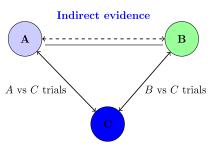

Webpage: https://www.nmastudioapp.com

Why a software tool?

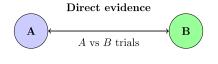
- NMAs simultaneously compare multiple treatments -> large number of results produced
- Visualisation is challenging, especially with large networks
- Think of the long Supplementary materials of published NMAs
- Software has played a role in the growth of published NMAs

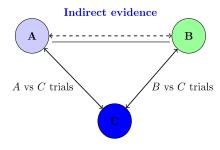
Why a software tool?


- NMAs simultaneously compare multiple treatments -> large number of results produced
- Visualisation is challenging, especially with large networks
- Think of the long Supplementary materials of published NMAs
- Software has played a role in the growth of published NMAs

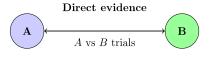


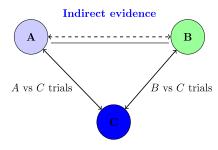
- NMAs simultaneously compare multiple treatments —> large number of results produced
- Visualisation is challenging, <u>especially with large networks</u>
- Think of the long Supplementary materials of published NMAs
- Software has played a role in the growth of published NMAs
- Existing software not fully interactive
- We are moving to online/ living evidence (e.g. Covid evidence) → flexible, user-friendly software is needed to keep up with fast-production of new evidence

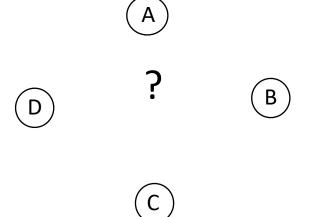

Which treatment works best? (in terms of e.g. efficacy/safety)



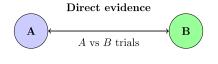
Which treatment works best? (in terms of e.g. efficacy/safety)

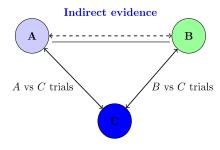




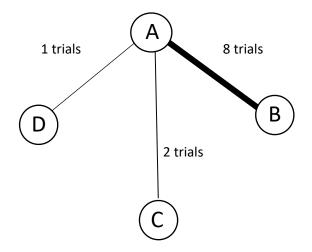

 \bigcirc

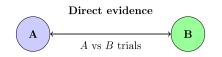
Which treatment works best? (in terms of e.g. efficacy/safety)

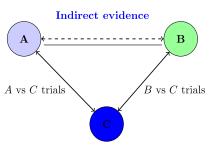




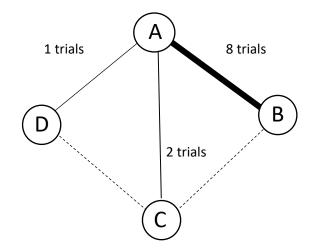
Which treatment works best? (in terms of e.g. efficacy/safety)

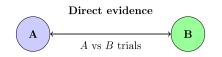


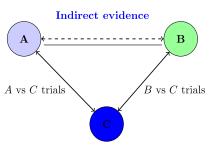



 \bigcirc

Which treatment works best? (in terms of e.g. efficacy/safety)







Which treatment works best? (in terms of e.g. efficacy/safety)

Check that the underlying assumptions which make indirect evidence valid are met in your network

1 Check transitivity — 2 Summary of effects — 3 Assess consistency & — 4 Rank treatments small-study effects

NMAstudio assists the user in each step of an NMA

How does it work?

- Fully built in Python (Dash environment, Plotly for visualisation)
- ❖ Connected to R-package netmeta¹ to produce NMA results
- Can analyse two outcomes at a time
- Can read-in CINeMA² report file to provide additional visualisations
- Flexibility on data formats, outcome type etc...
- ❖ A built-in example is permanently loaded (to ease exploration)
- ❖ Works with any browser but Chrome, Mozilla preferred

Silvia Metelli (UParis) NMAstudio Cochrane Learning Live

¹G. Rücker, U. Krahn, J. König, O. Efthimiou, A. Davies, T. Papakonstantinou & G. Schwarzer. netmeta: Network Meta-Analysis using Frequentist Methods, 2021. R package version 2.0-1. https://CRAN.R-project.org/package=netmeta.

²A. Nikolakopoulou, J.P.T. Higgins, T. Papakonstantinou, A. Chaimani, C. Del Giovane, M. Egger & G. Salanti. CINeMA: An approach for assessing confidence in the results of a network meta-analysis PLOS Medicine 2020 17 1-19

LIVE DEMONSTRATION

Two examples

1. Built-in example (chronic plaque psoriasis data)

2. A user data set (major depressive disorders data)

Two examples

1. Built-in example (chronic plaque psoriasis data) _____ To demonstrate main functionalities

2. A user data set (major depressive disorders data)

Two examples

1. Built-in example (chronic plaque psoriasis data) _____ To demonstrate main functionalities

2. A user data set (major depressive disorders data) ——— To demonstrate data upload process

Trusted evidence.
Informed decisions.
Better health.

Cochrane Database of Systematic Reviews

158 RCTs comparing 20 drugs

[Intervention Review]

Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis

Emilie Sbidian^{1,2,3}, Anna Chaimani^{4,5}, Ignacio Garcia-Doval⁶, Liz Doney⁷, Corinna Dressler⁸, Camille Hua^{1,3}, Carolyn Hughes⁹, Luigi Naldi¹⁰, Sivem Afach³, Laurence Le Cleach^{1,3}

¹Department of Dermatology, Hôpital Henri Mondor, Créteil, France. ²Clinical Investigation Centre, Hôpital Henri Mondor, Créteil, France. ³Epidemiology in Dermatology and Evaluation of Therapeutics (EpiDermE) - EA 7379, Université Paris Est Créteil (UPEC), Créteil, France. ⁴Université de Paris, Centre of Research in Epidemiology and Statistics (CRESS), INSERM, F-75004, Paris, France. ⁵Cochrane France, Paris, France. ⁶Department of Dermatology, Complexo Hospitalario Universitario de Vigo, Vigo, Spain. ⁷Centre of Evidence Based Dermatology, Cochrane Skin Group, The University of Nottingham, Nottingham, UK. ⁸Division of Evidence Based Medicine, Department of Dermatology, Venerology and Allergology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany. ⁹C/O Cochrane Skin Group, The University of Nottingham, Nottingham, UK. ¹⁰Centro Studi GISED (Italian Group for Epidemiologic Research in Dermatology) - FROM (Research Foundation of Ospedale Maggiore Bergamo), Padiglione Mazzoleni - Presidio Ospedaliero Matteo Rota, Bergamo, Italy

Two outcomes:

- **EFFICACY:** PASI 90 Psoriasis Area and Severity Index (RR)
- SAFETY: SAE Serious Adverse Events (RR)

Link to NMAstudio

Outcome:

• **EFFICACY:** Response Rate as total n. of patients with ≥50% reduction of the total score on a standardised observer-rating scale for depression (OR)

432 RCTs comparing 21 drugs

focus on head-to-head comparisons

179 RCTs comparing 19 drugs

Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: a systematic review and network meta-analysis

Andrea Cipriani, Toshi A Furukawa*, Georgia Salanti*, Anna Chaimani, Lauren Z Atkinson, Yusuke Ogawa, Stefan Leucht, Henricus G Ruhe, Erick H Turner, Julian PT Higgins, Matthias Egger, Nozomi Takeshima, Yu Hayasaka, Hissei Imai, Kiyomi Shinohara, Aran Tajika, John P A Ioannidis, John R Geddes

Summary

Background Major depressive disorder is one of the most common, burdensome, and costly psychiatric disorders worldwide in adults. Pharmacological and non-pharmacological treatments are available; however, because of inadequate resources, antidepressants are used more frequently than psychological interventions. Prescription of these agents should be informed by the best available evidence. Therefore, we aimed to update and expand our previous work to compare and rank antidepressants for the acute treatment of adults with unipolar major depressive disorder.

Methods We did a systematic review and network meta-analysis. We searched Cochrane Central Register of Controlled Trials, CINAHL, Embase, LILACS database, MEDLINE, MEDLINE In-Process, PsycINFO, the websites of regulatory agencies and international registers for published and unpublished double-blind randomised

ancet 2018; 391: 1357–66

Published Online February 21, 2018 http://dx.doi.org/10.1016/ S0140-6736(17)32802-7

See Comment page 1333

*Joint first authors

Department of Psychiatry, University of Oxford, Oxford,

User data upload

What you need:

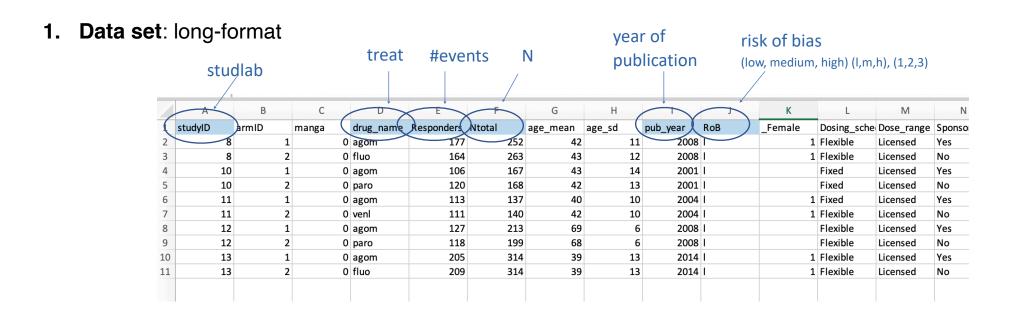
- 1. A .csv file containing main data set
- 2. A .csv file containing CINeMA report (optional)

In the data selection process, you will choose:

- Data Format: long, wide, wide inverse variance (iv)
- Outcome type: continuous vs binary
- Effect size: OR, RR, MD, SMD

1. Data set: long-format

/	Α	В	С	D	Е	F	G	Н		J	K	L	M	N
1	studyID	armID	manga	drug_name	Responders	Ntotal	age_mean	age_sd	pub_year	RoB	_Female	Dosing_sche	Dose_range	Sponso
2	8	1	C	agom	177	252	42	11	2008	I	1	Flexible	Licensed	Yes
3	8	2	C	fluo	164	263	43	12	2008	I	1	Flexible	Licensed	No
4	10	1	C	agom	106	167	43	14	2001	I		Fixed	Licensed	Yes
5	10	2	C	paro	120	168	42	13	2001	I		Fixed	Licensed	No
6	11	1	C	agom	113	137	40	10	2004	I	1	Fixed	Licensed	Yes
7	11	2	C	venl	111	140	42	10	2004	I	1	Flexible	Licensed	No
8	12	1	C	agom	127	213	69	6	2008	I		Flexible	Licensed	Yes
9	12	2	C	paro	118	199	68	6	2008	I		Flexible	Licensed	No
10	13	1	C	agom	205	314	39	13	2014	I	1	Flexible	Licensed	Yes
11	13	2	C	fluo	209	314	39	13	2014	I	1	Flexible	Licensed	No


2. CINeMA report (optional)

- as it is saved from CINeMA -

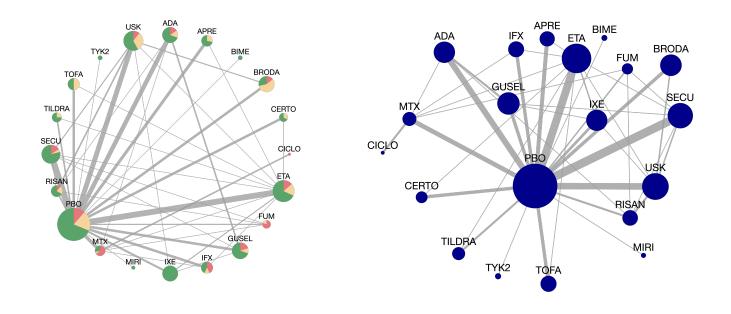
А	В
Comparison	Confidence rating
agom:amit	Moderate
agom:bupr	Moderate
agom:cita	Moderate
agom:clom	Moderate
agom:dulo	Low
agom:esci	Moderate
agom:fluo	Low

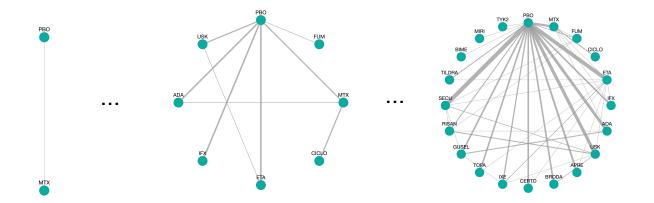
User data example: major depressive disorder data

2. CINeMA report (optional)

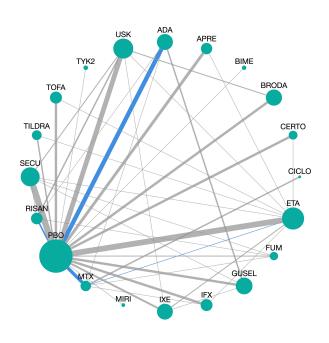
- as it is saved from CINeMA -

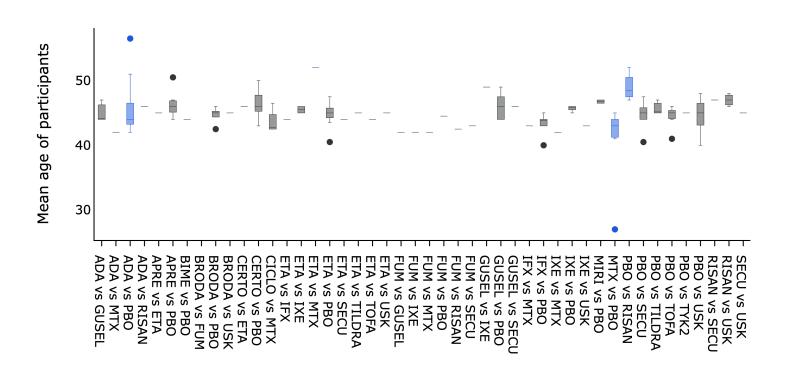
А	В	(
Comparison	Confidence rating	
agom:amit	Moderate	
agom:bupr	Moderate	
agom:cita	Moderate	
agom:clom	Moderate	
agom:dulo	Low	
agom:esci	Moderate	
agom:fluo	Low	

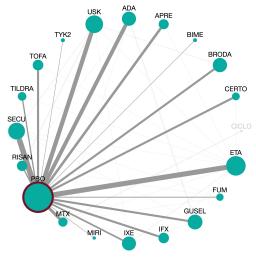


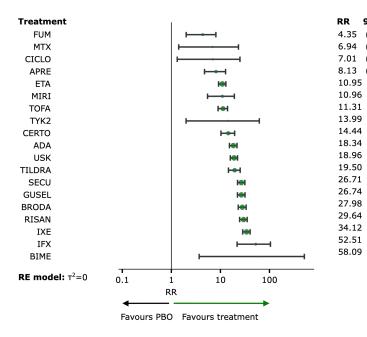


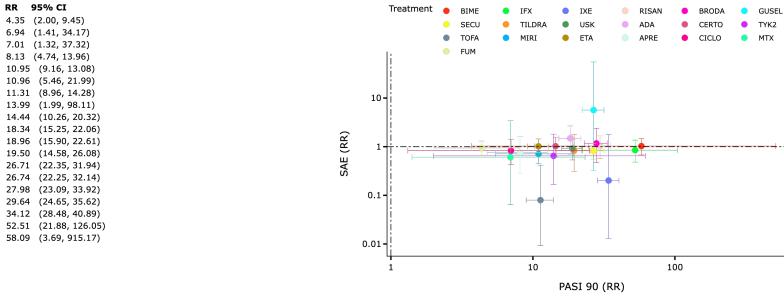
Link to NMAstudio


CONSIDERATIONS & FINAL REMARKS

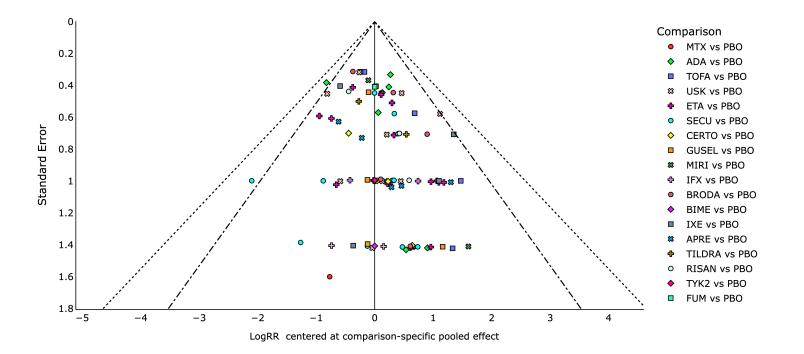




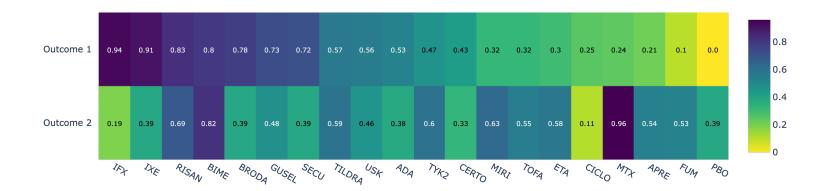


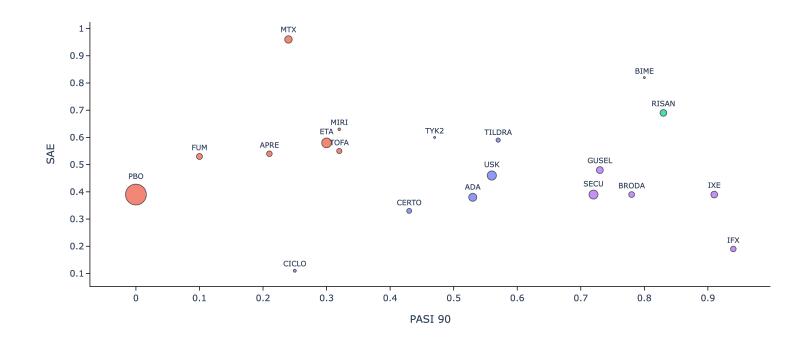


Examples of outputs: league table



Treatment	IFX	IXE	RISAN	BIME	MIRI	SECU	GUSEL	BRODA	ADA	ETA	РВО
IFX		1.45	2.08	0.14	2.29	1.46	0.62	0.69	0.69	0.56	1.48
""	IFX	(0.59, 3.53)	(0.88, 4.96)	(0.01, 2.35)	(0.49, 10.61)	(0.63, 3.39)	(0.25, 1.55)	(0.27, 1.79)	(0.30, 1.62)	(0.24, 1.27)	(0.71, 3.10)
IXE	1.54	IV.E	1.44	0.20	1.58	1.01	0.90	1.01	1.00	0.81	1.03
	(0.63, 3.74)	IXE	(0.74, 2.80)	(0.01, 3.23)	(0.38, 6.65)	(0.53, 1.91)	(0.51, 1.57)	(0.46, 2.18)	(0.55, 1.85)	(0.46, 1.41)	(0.62, 1.70)
RISAN	1.77	1.15	RISAN	0.28	0.91	0.70	1.29	1.45	1.45	1.16	1.41
	(0.73, 4.31)	(1.01, 1.31)	KISAN	(0.02, 4.62)	(0.22, 3.75)	(0.42, 1.18)	(0.66, 2.54)	(0.70, 2.99)	(0.84, 2.49)	(0.64, 2.09)	(0.89, 2.21)
BIME	1.11	1.70	1.96	BIME	0.31	0.20	0.22	0.20	5.10	0.24	0.20
	(0.06, 19.96)	(0.11, 26.98)	(0.12, 31.07)	DIIVIE	(0.01, 6.67)	(0.01, 3.21)	(0.01, 3.63)	(0.01, 3.27)	(0.32, 82.47)	(0.02, 3.95)	(0.01, 3.16)
MIRI	4.79	3.11	0.37	5.30	MIRI	0.64	1.42	1.59	1.59	1.28	0.65
	(1.57, 14.67)	(1.52, 6.39)	(0.18, 0.76)	(0.31, 91.07)	WIIIXI	(0.16, 2.59)	(0.33, 6.04)	(0.37, 6.91)	(0.39, 6.49)	(0.31, 5.18)	(0.17, 2.48)
SECU	1.97	1.28	1.11	2.17	0.41	SECU	0.90	1.01	1.01	0.81	0.98
	(0.81, 4.78)	(1.12, 1.45)	(1.00, 1.23)	(0.14, 34.45)	(0.20, 0.84)	3200	(0.46, 1.76)	(0.50, 2.03)	(0.58, 1.78)	(0.47, 1.41)	(0.65, 1.48)
GUSEL	0.51	0.78	0.90	2.17	2.44	1.00	GUSEL	1.12	1.12	0.90	0.92
	(0.21, 1.24)	(0.72, 0.85)	(0.79, 1.02)	(0.14, 34.43)	(1.19, 5.01)	(0.88, 1.14)	COSEE	(0.50, 2.50)	(0.63, 1.98)	(0.48, 1.70)	(0.53, 1.58)
BRODA	0.53	0.82	0.94	2.08	2.55	1.05	1.05	BRODA	1.00	1.25	1.03
	(0.22, 1.30)	(0.71, 0.95)	(0.83, 1.08)	(0.13, 32.92)	(1.24, 5.26)	(0.94, 1.17)	(0.90, 1.22)	BRODA	(0.49, 2.05)	(0.61, 2.54)	(0.57, 1.87)
ADA	0.35	0.54	0.62	0.32	1.67	0.69	0.69	0.66	ADA	1.25	1.03
	(0.14, 0.85)	(0.48, 0.60)	(0.55, 0.69)	(0.02, 5.00)	(0.81, 3.44)	(0.60, 0.78)	(0.63, 0.75)	(0.56, 0.77)		(0.71, 2.19)	(0.68, 1.56)
ETA	0.21	0.32	0.37	5.31	1.00	0.41	0.41	2.56	1.67	ETA	0.83
	(0.09, 0.51)	(0.29, 0.36)	(0.32, 0.43)	(0.33, 84.05)	(0.49, 2.05)	(0.36, 0.47)	(0.36, 0.47)	(2.19, 2.99)	(1.45, 1.94)		(0.55, 1.23)
PBO	52.51	34.12	0.03	58.09	10.96	0.04	26.74	27.98	18.34	10.95	РВО
	(21.88,126.05)	(28.48, 40.89)	(0.03, 0.04)	(3.69,915.12)	(5.46, 21.99)	(0.03, 0.04)	(22.25, 32.14)	(23.09, 33.92)	(15.25, 22.06)	(9.16, 13.08)	. = 0


Examples of outputs: consistency and small-study checks



Comparison	direct	indirect	p-value
ADA vs GUSEL	0.678	0.737	0.5124
ADA vs PBO	15.1776	19.7713	0.2054
BRODA vs PBO	31.5189	27.255	0.5679
ETA vs IXE	0.3276	0.3074	0.6193
ETA vs TOFA	0.8968	1.3581	0.0989
IXE vs PBO	39.5201	33.6765	0.6337
IXE vs USK	1.7263	1.8419	0.6201
PBO vs TOFA	0.1125	0.0777	0.1367

NMAstudio

- ➤ is *fully* interactive, flexible web application
- > simplifies the whole NMA process and assists in interpretation of findings
- > Can ease analyses for people with no programming skills
- > But also, can ease visualisations for people with programming skills

Recommendations

- > We recommend to follow guidelines provided in the tutorial/online material
- > We recommend to use NMAstudio following advice from experienced statisticians

Forthcoming & Future Updates

In the near future:

- ➤ More options for the graph customisation
- ➤ more alerts/warnings in general (e.g. for transitivity/consistency)
- > R console
- > sensitivity analyses (e.g. by RoB, year of publication)
- > Option for uploading analyses results and only perform visualisation
- Python package: 'nmastudio' (under development)

In a bit further future:

- > option for Bayesian NMA analyses (linking NMAstudio to R + JAGS or Stan)
- > permanent link to your project
- >not restricted to this list!

Any ideas/suggestions are very welcome, your feedback is important

please email me at silvia.metelli@u-paris.fr if you want to get in touch

APP: https://www.nmastudioapp.com

TUTORIAL/ DOCUMENTATION: https://www.nmastudioapp.com/doc

NEWS: https://www.cer-methods.com/

THANK YOU!

(special thanks to netmeta and CINeMA developers)

