
Network meta-analysis of rare events using 
penalised likelihood regression

Theodoros Evrenoglou

Ian R. White, Dimitris Mavridis, Anna Chaimani

Université de Paris, Research Center of Epidemiology & Statistics (CRESS-UMR1153), 

Inserm, France 

MRC Clinical Trials Unit, University College London, London, UK

Department of Primary Education, University of Ioannina, Greece

A day with….Statistical Methods Group 
11/05/2021 1



• Lack of a concrete definition of what constitutes a rare event

✓ Roughly, when a small number of events (even zero) is observed in the studies at hand

✓ Usually, outcome risks<5% are considered subject to the issue of rare events 

• Meta-analysis of rare events requires special attention

✓ Individual studies are often underpowered to detect any treatment effects

✓ Conventional statistical models (e.g. inverse variance model) are problematic and inappropriate

• Common issue for safety outcomes (e.g. different types of adverse effects)

Background
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The Issue of Rare Events in Cochrane Reviews

• In a sample of 500 Cochrane reviews:

✓ about 50% having (safety) outcomes with 
rare events

✓ about 30% having at least one study with 
zero events in one arm

✓ Most common synthesis methods:
1. Inverse-variance (IV) method
2. Mantel-Haenszel (MH) method
3. Peto method

✓ i.e. methods available in RevMan
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Network Meta-Analysis of rare events
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Network Meta-Analysis of rare events

Efthimiou O. Evid Based Ment Health 2018
Efthimiou O, et al. Stat Med. 2019
Stijnen T, et al. Stat Med. 2010
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Very small number of events
• IV model

✓ large sample approximations invalid for rare events

✓ requires continuity correction (e.g. adding 0.5) for 0 
events 

• MH and Non-Central Hypergeometric (NCH) NMA 
models

✓ usually perform better than IV

✓ only common-effect models

✓ exclusion of only-zero event studies

✓ examined in one simulation study with few scenarios

• Bayesian methods

✓ even vague priors may strongly influence the results

How to analyse these data?



• Aim: To suggest a new NMA model appropriate for the synthesis of studies with rare events that 
would
✓ reduce bias in the estimation of treatment effects in comparison to existing methods
✓ be applicable also in extreme cases with very small - even zero - numbers of events   

• We extend a logistic regression model with penalised likelihood function proposed by Firth 
(1993) into the context of NMA.

• We allow the incorporation of heterogeneity using an overdispersion parameter in a two-stage 
approach

• We compare our method with other NMA models using an extensive simulation study and a real 
example on the safety of different drugs for chronic plaque psoriasis 

Firth D. Biometrika 1993.
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Penalised likelihood NMA (PL-NMA) approach



The common-effect PL-NMA model

• Binomial distribution: 𝑟𝑖𝑘~𝐵𝑖𝑛 𝑛𝑖𝑘 , 𝑝𝑖𝑘

• Logistic regression for NMA 
𝑙𝑜𝑔𝑖𝑡 𝑝𝑖𝑘 = 𝑎𝑖 + 𝑋𝑖𝑘𝛿𝑏𝑘

• Likelihood function: 𝐿 𝑝𝑖𝑘 𝑟𝑖𝑘 , 𝑛𝑖𝑘 = ς𝑖=1
𝑁 ς𝑘=1

𝐾 𝑛𝑖𝑘
𝑟𝑖𝑘

𝑝𝑖𝑘
𝑟𝑖𝑘(1 − 𝑝𝑖𝑘)

𝑟𝑖𝑘

reference 
treatment

6Firth D. Biometrika 1993.
Dias S, et al. Med Decis Making 2013.

relative effect of k vs 
b in study i

baseline risk of the 
event in study i

Number of events in 
arm k of study i

Total participants in 
arm k of study i

Probability of an 
event in arm k of 

study i

0 for k=b, 1 for k≠b
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Inverse Variance-Common

Inverse Variance-Random

Mantel-Haenszel

Non-Central Hypergeometric

Penalised likelihood

Binomial-Normal

Bayesian-Common

Bayesian-Random

larger bias

• Inverse-Variance model 
✓ a suboptimal choice - important bias under 

certain scenarios

0 0 0 0

• Penalised likelihood model 
✓ overall the best performance in terms of bias 
✓ much more consistent across the different 

scenarios

0
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Simulation Results

0 0

• Mantel-Haenszel and Non-Central 
Hypergeometric models 
✓ generally good performance
✓ may suffer from important bias in the presence 

of very low event rates and many treatments

0

0• Binomial-Normal (ΒΝ) model 
✓ consistent performance across scenarios

• Bayesian models
✓ The common-effects model was less biased 

than the random effects model.
✓ Both are highly biased in many scenarios
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Illustrative Example

• A network comparing the safety of 
different drugs for chronic plaque 
psoriasis.

• Outcome: Number of malignancies

• Network characteristics:
✓ 6 classes of treatments
✓ 43 studies 
✓ Range of risks: 0-1%
✓ Mean sample size per arm: 226
✓ 31 zero event trials

8Afach S et al. Br J Dermatol 2020.

Anti-IL 12/23Placebo

Anti-IL 23

Anti-TNF Apremilast

Anti-IL 17

12 studies are
available after
the exclusion.
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Results

All analyses performed in R v3.6.3

Favours Treatment Favours Placebo
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Discussion
• NMA of rare events is a challenging field and only a few methods have been proposed to date 

for analyzing such data

• Our PL-NMA model provides a promising alternative for NMA of rare events
✓ good performance in terms of bias based on the simulation results
✓ works even under extreme scenarios and preserves the connectivity of the network by 

avoiding study exclusion
✓ under certain conditions gives more precise results

• In principle a common-effects model
✓ Incorporation of heterogeneity takes place in a non-standard way.

• No meta-analytic method is uniquely best in the presence of rare events

• Sensitivity analysis should always take place to investigate the robustness of results under 
different analysis schemes

• We plan to implement the method in an R-package (e.g. netmeta)
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