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E are endothelin receptor antagonists

P5 are phosphodiesterase-5 inhibitors

Pr are prostacyclin analogues. 

Disconnected network in imatinib 
for PAH
▪ Thom 2015 network meta-analysis (NMA) in pulmonary arterial hypertension 

(PAH)

▪ Wanted to compare “E+P5+Pr” vs “E+P5+imatinib”

▪ Network based solely on RCTs was disconnected.
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Disconnected network in imatinib 
for PAH

▪ Completed the network using single-arm observational studies

▪ This required an assumption of exchangeable or random
baseline effects

E are endothelin receptor antagonists

P5 are phosphodiesterase-5 inhibitors

Pr are prostacyclin analogues. 



Network meta-analysis with independent 
baselines

▪ 𝜇𝑖 is the “baseline effect” representing the (for example) log odds of 
event on the baseline treatment of RCT 𝑖.

▪ In RCTs 1 and 2 above, it corresponded to “reference treatment” 1.

▪ All models fit through Bayesian MCMC in OpenBUGS software with 
vague priors
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Independent baselines if networks are 
connected

▪ In RCT 3 the 𝜇3 corresponds to log odds of response on treatment 3.

▪ Use consistency to link to any treatment in the connected network.
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Network meta-analysis with independent 
baselines

▪ If modelling binary outcomes for arm 𝑘 of trial 𝑖
𝑟𝑖𝑘~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑝𝑖𝑘, 𝑛𝑖𝑘)

logit 𝑝𝑖𝑘 = 𝜇𝑖 + 𝛿𝑖,𝑏𝑘 if 𝑡𝑖𝑘 ≠ 𝑏

logit 𝑝𝑖𝑘 = 𝜇𝑖 if 𝑡𝑖𝑘 = 𝑏

▪ With

𝛿𝑖,𝑏𝑘 = 𝑑1𝑡𝑖𝑘 − 𝑑1𝑡𝑖𝑏 (Fixed effects)

𝛿𝑖,𝑏𝑘~𝑁𝑜𝑟𝑚𝑎𝑙(𝑑1𝑡𝑖𝑘 − 𝑑1𝑡𝑖𝑏 , 𝜎) (Random effects)

▪ So 𝑑1𝑡 are log odds ratios for treatment 𝑡 vs 1



Network meta-analysis with independent 
baselines

logit 𝑝𝑖𝑘 = 𝜇𝑖 + 𝛿𝑖,𝑏𝑘 if 𝑡𝑖𝑘 ≠ 𝑏

logit 𝑝𝑖𝑘 = 𝜇𝑖 if 𝑡𝑖𝑘 = 𝑏

▪ 𝜇𝑖 are assumed independent across RCTs (nuisance parameters)

▪ This controls for differences in prognostic variables across RCTs
– These are variables that affect the baseline response

▪ If not assumed independent (e.g. 𝜇𝑖~N m, 𝜎𝜇 ) can interfere with 
randomization (i.e. estimates of 𝑑12 and 𝑑13 may be biased)

– ‘Placebo’ response may improve over time. Random baseline effects pull 
older placebo response up and push new placebo response down.

– Biases against older treatments

– However, work has demonstrated bias can be limited in practice (Beliveau 
2017)



Disconnected networks
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Why not call it a day?

▪ Wait for RCTs to compare 4 or 5 with 1, 2, or 3?
– Rare disease, so running RCTs practically impossible.

– Treatments 1, 2, and 3 may be very old. Perhaps not ethical to include in an 
RCT.

▪ Healthcare decision makers (e.g. NICE in the UK) don’t have that 
luxury.

▪ Not comparing 4 or 5 due to lack of evidence is an implicit decision 
that 1, 2, or 3 are better.



IPD

IPD

IPD

If individual patient data are available for 
all trials

▪ If we have individual participant data (IPD) on trials can balance 
populations in three ways

– Propensity score matching or weighting
– Regression adjustment, which predicts outcomes in common populations
– Doubly robust estimation (weighting + regression adjustment)

▪ These methods can only be implemented if we have IPD from all studies

▪ Rarely have IPD from all trials…
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IPD

IPD

If individual patient data available for 
subset of trials

▪ Companies usually have IPD from at least the trial on their drug

▪ Then use IPD on treatment 1 to predict response in population of 4v5 RCT.

– Propensity score reweighting: Matching Adjusted Indirect Comparison (MAIC)

– Outcome Regression: Simulated Treatment Comparison (STC)

▪ However, governments and academics rarely have any IPD.
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▪ Could combine RCT with observational evidence
–Retrospective registry studies (e.g. hip replacement surgery -

Fawsitt 2019)

▪ Simple approach is to assume 𝑑34
𝑂𝑏𝑠 = 𝑑34

𝑅𝐶𝑇 = 𝑑34
▪ Or if sufficient data use hierarchical models 𝑑𝑎𝑏

𝑅𝐶𝑇~𝑁(𝐷𝑎𝑏, 𝜔
2) and 

𝑑𝑎𝑏
𝑂𝑏𝑠~𝑁(𝐷𝑎𝑏, 𝜔

2) (Schmitz 2013)

▪ However, cohort or registry studies not always available, especially for 
novel therapies.

Non-randomized comparative evidence
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3

Node merging or class effects models

▪ Or just assume treatments 3 and 4 are the same, perhaps as they 
are members of the same pharmacological class

– Or related in a class effects model (e.g. Owen 2015)

▪ This doesn’t solve the problem of comparing treatments 3 and 4 as 
there is still no evidence (e.g. comparing DOACs in atrial fibrillation)

▪ Maybe not justified to assume 4=3 (or 4=2, 4=1, 5=3, 5=2, or 5=1)
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What can you do?

▪ No individual patient data

▪ No observational comparative evidence

▪ Can’t merge treatments

We have explored two methods using only 

aggregate RCT data (AD)…



Connecting study 𝑖′

▪ Study 𝑖′ is either a single arm or a disconnected RCT

▪ In both cases continue to assume 𝜇𝑖 independent in connected 
network, preserving randomization 

▪ Generate 𝜇𝑖′ for single-arm study or disconnected RCT using

– Reference prediction (RP) - a refined random effects on baseline

– Aggregate level matching (ALM)
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Reference prediction (RP)

▪ On the connected component of the network, proceed with independent 
baselines NMA, avoiding interference with randomization

▪ Perform a meta-analysis of 𝜇𝑖 from RCTs with the reference treatment.

– So these 𝜇𝑖 represent response on the same treatment

– Keep the data separate from independent baselines NMA to avoid 
interference with randomization

▪ Fit a model with or without covariates
𝜇𝑖~N m, 𝜎𝜇

𝜇𝑖~N(m + 𝛽𝑥𝑖 , 𝜎𝜇)

▪ Predict response in disconnected RCT or single-arm study

𝜇
𝑖′
𝑝𝑟𝑒𝑑

~N m, 𝜎𝜇
𝜇
𝑖′
𝑝𝑟𝑒𝑑

~N(m + 𝛽𝑥𝑖′ , 𝜎𝜇)



Aggregate level matching (ALM)

▪ Choose the best matching RCT 𝑖 with any baseline 
treatment 𝑡𝑖𝑏

–e.g. Euclidean distance on age, gender, baseline severity

▪ Fit a standard independent baselines model first and use 
the mean 𝜇𝑖 from that best matching RCT

▪ Make it less precise by modelling

𝜇
𝑖′
𝑝𝑙𝑢𝑔−𝑖𝑛

~N 𝜇𝑖 , 𝜎𝜇𝑖
▪ Where 𝜎𝜇𝑖 is SD of estimated 𝜇𝑖
▪ Randomization again preserved in connected portion as 

independent baseline NMA used.



▪ Simulation studies and artificial data examples found fixed effects to 
give precise estimates but with poor coverage, we therefore 
recommend random treatment effects

▪ Recall random effects models
𝛿𝑖,𝑏𝑘~𝑁𝑜𝑟𝑚𝑎𝑙(𝑑𝑡𝑖𝑏𝑡𝑖𝑘 , 𝜎)

▪ For a study comparing treatments 1 and 2, for example
𝛿𝑖,12~𝑁𝑜𝑟𝑚𝑎𝑙(𝑑12, 𝜎)

▪ The heterogeneity variance 𝜎2 represents extent of variation 
between study-level relative effects on each contrast (e.g. 𝛿𝑖,12)

▪ NMA commonly assumes same 𝜎2 for all contrasts as evidence 
sparse

– Need at least two studies on one contrast for 𝜎2 to be identifiable

Random effects on treatment



Random effects

▪ Two problems with assuming the same 𝜎2 for the connected RCTs, 
disconnected RCTs, and single-arm studies

– Variation potentially different. Likely larger in single-arm studies

– Allowing disconnected RCTs or single-arm studies to influence estimation of 
𝜎2 in connected RCTs will interfere with randomization

▪ We therefore assume different 𝜎2 for each

▪ Can overcome identifiability issues by using 𝜎 as an informative 
prior for 𝜎′

– Or by using Turner informative priors



Random effects for ALM and RP
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Multi-arm correction for standard NMA

▪ Trials with more than 2 arms have more than one relative effect 𝛿𝑖,𝑏𝑘
▪ They are correlated as they are all relative to the same baseline arm on 

treatment 𝑏. 

▪ Under reference prediction for disconnected RCTs, this must be adapted 
as relative effects 𝛿𝑖,𝑘 are always relative to the reference 1 and not a 
common baseline arm of the RCT. Similar correction applies to ALM

▪ The multivariate Normal distribution becomes (𝑎𝑖 is number of arms)
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𝛿𝑖,1
⋮

𝛿𝑖,𝑎𝑖

~𝑁𝑎𝑖−1

𝑑1,𝑡𝑖1
⋮

𝑑1,𝑡𝑖𝑎𝑖

,

𝜎2
′

ൗ𝜎2
′

2…
ൗ𝜎2
′

2
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2 ⋱ ൘
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𝜎2
′

2

൘
⋮

𝜎2
′

2 ⋯ ൗ𝜎2
′
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′

▪ There are 𝑎𝑖 (rather than 𝑎𝑖 − 1) relative effects

▪ Note that the disconnected RCT specific heterogeneity variance 𝜎2
′

is 
being used. 



Application to Atrial Fibrillation

▪ Start with a single constructed example, then present a 
simulation study.

– This is simple test to confirm our methods do what we expect

▪ Consider key outcome of ischaemic stroke

▪ Reference treatment was coumarin (INR 2-3), also called 
Warfarin.

▪ Network was connected but we will artificially disconnect it



Removing coumarin arms from 
dabigatran 110mg and 150mg RCT

Dabigatran subnetwork 

(Only 1 RCT: RE-LY)

Non-dabigatran subnetwork

Dabigatran (110mg bd)

Dabigatran (150mg bd)



Removing coumarin arms from 
dabigatran 110mg and 150mg RCT

Dabigatran

(2 single-arm studies)

Non-dabigatran subnetwork

Dabigatran (110mg bd)

Dabigatran (150mg bd)



Connecting single-arm studies
Random effects

▪ First consider relative 
effects in only the 
connected (non-
dabigatran) network

▪ Point estimates and 
uncertainty intervals 
match

▪ Safe to use



Connecting single-arm studies
Random effects

▪ Reference prediction 
and ALM appear to have 
good coverage and are 
close to truth

▪ Fixed effects analyses 
similar but with tighter 
credible intervals for 
ALM



Connecting disconnected RCTs
Random effects

▪ Point estimates close

▪ But credible interval for ALM 
too wide!

– Be careful with choice of 
matching RCT

▪ Fixed effects similar but poor 
coverage for ALM



Summary so far

Findings

▪ Reference prediction and ALM can reproduce treatment effects 
using single-arm studies and disconnected RCTs and no IPD

▪ Both avoid interference with randomization in connected RCTs

▪ Reference prediction may be ‘safer’ as more conservative.

▪ Random effects requires assumptions on heterogeneity variance

Next step

▪ Simulation study to assess how ALM and RP would do in other 
situations.



Basic geometries to explore

▪ We vary the number of connected RCTs but not the number of 
disconnected RCTs or single-arm studies.

▪ We want to vary evidence for reference prediction and ALM, 
which is only the connected RCTs.

▪ In all scenarios assume 5 disconnected RCTs (4 vs 5) or 10 
single-arm studies (5 on treatment 4 and 5 on treatment 5)
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Number of RCTs

▪ Three scenarios for number of RCTs on 
the connected network

▪ Expect reference prediction and ALM to 
improve as more data available on 
reference treatment.

▪ Size of trials fixed at 100 patients on each 
arm

– Focus is difference across trials
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Underlying model for baselines

▪ Model for simulated baseline response on log odds ratio scale
𝜇𝑠~𝑁𝑜𝑟𝑚𝑎𝑙(𝑚 + 𝑋𝑠𝛽 + 𝐼𝑠=𝑑𝑖𝑠𝑐𝛾, 𝑠𝑑 = 1)

▪ 𝑚 is overall mean, 𝛽 is covariate effect, 𝑋𝑠 is covariate value

▪ Set 𝑚 ~𝑁 0.5,1 determining scale for other parameters

▪ 𝑋𝑠 represents variation in treatment effect across studies

𝑋𝑠~𝑁 0.5,1 for each study

▪ Different scenarios explored for 𝛽 (next slide)

▪ 𝐼𝑠=𝑑𝑖𝑠𝑐 is indicator for 𝑠 being disconnected or a single-arm

▪ 𝛾 is additional variation in baseline response in such studies.
– Represents differences in prognostic variables between RCTs and 

disconnected RCTs or single arm studies.

– Non-zero 𝛾 implies that RP and ALM will be biased

– Consider two scenarios

𝛾 = 0
and

𝛾 ~𝑁 0.5,1



Scenarios on prognostic variable

𝜇𝑠~𝑁𝑜𝑟𝑚𝑎𝑙(𝑚 + 𝑋𝑠𝛽 + 𝐼𝑠=𝑑𝑖𝑠𝑐𝛾, 𝑠𝑑 = 1)

▪ The 𝛽 represents strength of prognostic variable
– Stronger relation suggests better reference prediction or ALM

– Only consider one prognostic variable

– This is without loss of generality – unaccounted extras would be 
captured by 𝑚 or 𝛾 while accounted extras would just be stronger 𝛽

▪ Weak vs strong prognostic covariate 𝛽~𝑁(0.1,1) or 𝛽~𝑁(1,1)
– Covariate assumed not to be an effect modifier. Effect modifiers are a 

problem for both connected and disconnected networks and our 
methods to not purport to overcome imbalance in effect modifiers.



Power calculations

▪ Used expected coverage and expected bias formulae from 
Morris 2019

▪ Coverage:
– If 95% CrI includes ‘truth’ it is success, otherwise fail. 

– Report proportion of ‘success’, which is the coverage probability.

▪ Bias:  
1

𝑛𝑠𝑖𝑚
σ
𝑖=1
𝑛𝑠𝑖𝑚 መ𝑑𝑖 − 𝑑

▪ For 𝑛𝑠𝑖𝑚 = 100 MSE of bias 0.015

▪ For 𝑛𝑠𝑖𝑚 = 100 MSE of coverage 0.047

▪ These are acceptable MSE for coverage and bias but may 
increase to 𝑛𝑠𝑖𝑚 = 1000

Morris TP, White IR, Crowther MJ. Using simulation studies to evaluate statistical methods. Statistics in Medicine. 2019



Total number of scenarios

▪ 𝛽 is prognostic effect of covariate(s)

▪ 𝛾 is difference in prognostic factors between connected and 
disconnected components

▪ This gives 2x2x2x3 = 24 scenarios each for fixed and random effects.

▪ For each scenario, need to apply connected NMA, reference prediction, 
and ALM

– 3 models fit for every scenario

– Assess fixed and random effects separately.

𝐹𝑖𝑥𝑒𝑑 𝑒𝑓𝑓𝑒𝑐𝑡𝑠
𝑅𝑎𝑛𝑑𝑜𝑚 𝑒𝑓𝑓𝑒𝑐𝑡𝑠

×

𝐷𝑖𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑅𝐶𝑇𝑠
𝑆𝑖𝑛𝑔𝑙𝑒 − 𝑎𝑟𝑚 𝑠𝑡𝑢𝑑𝑖𝑒𝑠

×
𝛽 𝑤𝑒𝑎𝑘
𝛽 𝑠𝑡𝑟𝑜𝑛𝑔

×
𝛾 𝑧𝑒𝑟𝑜
𝛾 𝑠𝑡𝑟𝑜𝑛𝑔 ×

5 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑅𝐶𝑇𝑠
15 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑅𝐶𝑇𝑠
50 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑅𝐶𝑇𝑠



Results
(Random effects, 𝑛𝑠𝑖𝑚 = 100)



Bias on connected (𝑛𝑠𝑖𝑚 = 100)
𝛾 = 0

5 RCTs 15 RCTs 50 RCTs

𝜷 𝒘𝒆𝒂𝒌 𝜷 𝒔𝒕𝒓𝒐𝒏𝒈 𝜷 𝒘𝒆𝒂𝒌 𝜷 𝒔𝒕𝒓𝒐𝒏𝒈 𝜷 𝒘𝒆𝒂𝒌 𝜷 𝒔𝒕𝒓𝒐𝒏𝒈

RCT only 0.02 0.03 0.00 0.02 0.00 0.00
ALM single 0.03 0.03 0.00 0.02 0.00 0.00

ALM 
disconnected

0.02 0.04 0.00 0.03 0.00 0.00

RP single 0.03 0.04 0.00 0.03 0.00 0.00
RP 

disconnected
0.03 0.04 0.00 0.03 0.00 0.00

• 𝛾 = 0 means baseline response in connected RCTs is similar to that in 
disconnected RCTs and single-arm studies

• Results on log odds ratio scale with true mean d=0.5

• Bias may be zero as MSE is 0.015*

• Bias on connected component largely agrees

Standard 

NMA

*Morris TP, White IR, Crowther MJ. Using simulation studies to evaluate statistical methods. Statistics in Medicine. 2019



Bias on disconnected (𝑛𝑠𝑖𝑚 = 100)
𝛾 = 0

5 RCTs 15 RCTs 50 RCTs

𝜷 𝒘𝒆𝒂𝒌 𝜷 𝒔𝒕𝒓𝒐𝒏𝒈 𝜷 𝒘𝒆𝒂𝒌 𝜷 𝒔𝒕𝒓𝒐𝒏𝒈 𝜷 𝒘𝒆𝒂𝒌 𝜷 𝒔𝒕𝒓𝒐𝒏𝒈

ALM single 0.06 0.03 0.07 0.13 -0.01 -0.06

ALM 
disconnected

0.15 0.21 -0.04 0.11 -0.10 0.04

RP single 0.02 0.08 0.08 -0.07 0.03 -0.01

RP 
disconnected

0.00 -0.07 -0.09 -0.15 0.07 0.01

• MSE is 0.015

• Much higher bias than in connected component (as expected)

• Bias is 10-20% of the mean log odds ratios (d=0.5)

• Similar to fixed effects

• Can’t consistently say that ALM or RP are better.

• Also can’t say that strong covariates (𝛽) give lower bias



Coverage on connected (𝑛𝑠𝑖𝑚 = 100)
𝛾 = 0

5 RCTs 15 RCTs 50 RCTs

𝜷 𝒘𝒆𝒂𝒌 𝜷 𝒔𝒕𝒓𝒐𝒏𝒈 𝜷 𝒘𝒆𝒂𝒌 𝜷 𝒔𝒕𝒓𝒐𝒏𝒈 𝜷 𝒘𝒆𝒂𝒌 𝜷 𝒔𝒕𝒓𝒐𝒏𝒈

RCT only 0.99 0.99 0.98 0.96 0.96 0.95

ALM single 1.00 0.99 0.97 0.96 0.96 0.95

ALM 
disconnected

0.99 0.99 0.98 0.96 0.94 0.95

RP single 1.00 0.99 0.97 0.96 0.96 0.95

RP 
disconnected

1.00 0.99 0.97 0.96 0.96 0.96

• MSE is 0.047

• Coverage greater than for fixed effects

• Coverage on connected component largely agrees



Coverage on disconnected (𝑛𝑠𝑖𝑚 = 100)
𝛾 = 0

5 RCTs 15 RCTs 50 RCTs

𝜷 𝒘𝒆𝒂𝒌 𝜷 𝒔𝒕𝒓𝒐𝒏𝒈 𝜷 𝒘𝒆𝒂𝒌 𝜷 𝒔𝒕𝒓𝒐𝒏𝒈 𝜷 𝒘𝒆𝒂𝒌 𝜷 𝒔𝒕𝒓𝒐𝒏𝒈

ALM single 0.73 0.77 0.57 0.55 0.52 0.53
ALM 

disconnected
0.86 0.86 0.68 0.74 0.73 0.74

RP single 0.89 0.93 0.91 0.88 0.95 0.92
RP 

disconnected
0.92 0.92 0.87 0.81 0.89 0.84

• MSE is 0.047 – so again maybe this is sufficient?

• RP has very good coverage

• This is expected as the predictions are so vague

• ALM has worse coverage, in particular for single arm studies

• However, more than twice as high as for fixed effects models



Bias on disconnected (𝑛𝑠𝑖𝑚 = 100)
𝛾 strong

5 RCTs 15 RCTs 50 RCTs

𝜷 𝒘𝒆𝒂𝒌 𝜷 𝒔𝒕𝒓𝒐𝒏𝒈 𝜷 𝒘𝒆𝒂𝒌 𝜷 𝒔𝒕𝒓𝒐𝒏𝒈 𝜷 𝒘𝒆𝒂𝒌 𝜷 𝒔𝒕𝒓𝒐𝒏𝒈

ALM single 0.19 0.25 0.24 0.22 0.22 0.29

ALM 
disconnected

0.03 0.13 0.15 0.30 0.04 0.20

RP single 0.30 0.17 0.26 0.21 0.19 0.21

RP 
disconnected

0.19 0.21 0.23 0.14 0.14 0.09

• Much higher bias than in 𝛾 = 0 case

• Now around 50% of mean true log odds ratio (d=0.5)

• This is because this noise in prognostic factors and effect modifiers can’t be 
modelled by ALM or RP.

• Similar to fixed effects



Coverage on disconnected (𝑛𝑠𝑖𝑚 = 100)
𝛾 strong

5 RCTs 15 RCTs 50 RCTs

𝜷 𝒘𝒆𝒂𝒌 𝜷 𝒔𝒕𝒓𝒐𝒏𝒈 𝜷 𝒘𝒆𝒂𝒌 𝜷 𝒔𝒕𝒓𝒐𝒏𝒈 𝜷 𝒘𝒆𝒂𝒌 𝜷 𝒔𝒕𝒓𝒐𝒏𝒈

ALM single 0.69 0.65 0.52 0.52 0.43 0.39
ALM 

disconnected
0.82 0.84 0.74 0.74 0.66 0.68

RP single 0.82 0.87 0.77 0.75 0.79 0.78
RP 

disconnected
0.84 0.85 0.70 0.73 0.77 0.76

• MSE is 0.047

• ALM has worse coverage than in 𝛾 = 0 case

• But twice that in fixed effects models

• RP is slightly worse in single-arm case but otherwise reasonably high. 

• Coverage gets worse if there are more RCTs, since predictions are closer to the 
connected evidence which is (non-zero 𝛾) systematically different.



Simulation study

Findings

▪ Bias depends on whether the baseline response is similar to 
connected and disconnected components.

– Ranged from 10% (good) to 50% (bad), although even 50% gives some 
indication of treatment effect size.

– Can’t model this unfortunately, but maybe get clinical advice?

▪ Reference prediction has good coverage in all cases, because 
predictions are so uncertain

▪ ALM has poorer coverage in all cases

▪ Can’t say if stronger covariates or more data improve performance.
– Unsure if extra simulations will resolve this, given the MSE is already low.



Closing remarks

Findings

▪ Reference prediction and ALM can reproduce treatment effects using 
single-arm studies and disconnected RCTs

– ALM poorer coverage but bias can be low

– RP better coverage and similar bias

▪ Both avoid interference with randomization in connected RCTs

▪ Recommend cross-validation to assess reference prediction or ALM

▪ Reference predictio may be ‘safer’ as more conservative.

Next steps

▪ In simulation study, maybe vary trial sizes and more simulations?

▪ Could use external information to inform the reference prediction models?

▪ Develop IPD models?

Remember

▪ ALM and reference prediction are methods of last resort for decision 
makers. High quality RCTs, or at least access to IPD, are still needed.
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