Challenges in Assessing Adverse Effects

Yoon K Loke

Cochrane Adverse Effects Methods Group

(supported by Cochrane Methods Innovation Fund)

Today's Content

- Adverse Effects (AE) are Unintended Outcomes
- How and why synthesizing AE data is more challenging Intended Outcomes
- Formulating relevant and important questions
- Constructing a PICO
- Integrating AE review with intended outcomes
- Relevant study designs
- Interpreting zero events and Risk of bias
- Outcomes tables and tackling selective non-reporting
- Danger of post-hoc decisions in AE reviews

Typical Review focuses on Intended Outcomes (Benefit)

- Pre-specified / defined primary outcome (usually beneficial effect of intervention)
- Outcome is main focus of research study, thus rigorous monitoring
- Power calculation to plan sample size
- Transparent reporting of data for primary outcome

Adverse Effects: Tiger Country

Photo by digitalART2, available under Creative Commons License

How AEs differ from Intended Outcomes

Seldom considered as primary interest

- Not prespecified or defined, thus inconsistent measurement/ coding, or missed altogether
- Study not powered to detect significant differences in secondary outcomes
- Most AE are less frequent than beneficial outcomes, so effect estimates are imprecise
- AE poorly reported due to focus on reporting main outcomes

Rest and a second secon

Almost limitless, diverse range of AEs

- Impossible for single study to capture all types of AE (common or rare, occurs shortly after intervention or long term)
- Some can be predicted (e.g. wound infection from surgery)
- Some new or unexpected; may not be correctly diagnosed (only become apparent on post-hoc analysis of emergent data)
- Only certain AE are reported; others selectively non-reported
- Multiple statistical testing false alarms

Example: AE Reporting (GSK trial)

Serious Adverse Events - On-Therapy, n (%)	RSG N=1456	MET N=1454
Myocardial infarction	20 (1.4)	15 (1.0)
Angina pectoris	8 (0.5)	19 (1.3)
Coronary artery disease	12 (0.8)	16 (1.1)
Angina unstable	8 (0.6)	7 (0.5)
Acute myocardial infarction	3 (0.2)	3 (0.2)
Myocardial ischemia	2 (0.1)	2 (0.1)
Coronary artery stenosis	3 (0.2)	2 (0.1)
Acute coronary syndrome	0	3 (0.2)

- Very similar Cardiac events split under multiple different categories
- Impossible to judge extent of duplication (same event coded more than once?)
 - Or if number of events = number of patients

Common endpoint: Composite AE

- Widely used and reported for comparing AE rates intervention vs. control:
 - Total Serious AE
 - Total Withdrawals due to AE
- But suffers same flaws as any other composite:
 - Huge mish-mash of diverse events
 - Elevated risk of a rare AE obscured by common AE
 - Some AE are due to treatment failure/ worsening disease
 - Who decides what the reason for withdrawal is? Often complex or multifactorial.

Decision Point: Review Question

- What do you want to achieve with your AE review?
- Different points of view
 - I have read that Treatment A is associated with brain haemorrhage
 - Patients want to know if New Treatment C genuinely has fewer stomach and skin AE than existing Treatment D
 - I don't really have any specific AE in mind, but I just want to have a general look around the Included trials to see if anything suspicious pops up

Formulating Review Question (2)

- Impossible to pre-specify all conceivable AE
- Three pragmatic approaches:
 - Focused specific evaluation of a few important AE
 - Broader exploratory ad hoc evaluation of any or all AE that happened to be reported in the Included studies.
 - A bit of both

Targeted /Hypothesis-Testing

- Pre-specify a few important events of interest (in the same way as intended outcomes)
- Can do scoping search for relevant events e.g.
 - Mechanistic plausibility (wound infection with surgery; bleeding with drugs that block blood clotting)
 - Signals identified in early studies (phase I/II trials, regulatory documents)
- This evaluates presence or absence of association between intervention and important AE
- Fails to pick up new or unexpected AE

Exploratory/ Hypothesis-Generating

- Does not name any particular AE outcomes
- Reviewers check all Included/Relevant studies, to fish out all or any AE
- Compile potentially huge list of disparate items
- Detects new or unexpected issues but:
 - Difficult to synthesize large chunks of varied data
 - Affected by multiple testing and post-hoc decisions
- Generates potential new signals, rather than confirmatory further focused/ hypothesis testing evalution is needed as follow-up

A Bit of Both

- Review can conceivably have hybrid approach:
 - Main focus on a few important AE
 - Subsidiary exploratory section on any new AE

Constructing a PICO

- AE data potentially available from any study that fulfils Participant-Intervention-Comparator criteria
- Difficulties in directly comparing benefit vs. harm if:
 - Studies included in the benefit meta-analysis are different from those in the harms meta-analysis
 - AE data available in diverse participants that are not necessarily covered in single review e.g. aspirin used in headache, stroke, heart attacks. This may require separate review covering aspirin/AE in all populations.

Decision Point: Study Designs

- Can I just use RCTs or should I broaden selection to nonrandomized designs?
- Depends on types of AE outcomes e.g. I'm worried about osteoporosis tablets and AE:
 - Nausea and stomach pain after taking the tablet
 - A serious rare complication known as osteonecrosis of the jaw (say, 1 in 1000)
 - Atypical bone fractures after 5-10 years of treatment
- Broad-sweep, exploratory reviews of diverse AE difficult to determine what designs are most suitable

Relevant Study Designs: RCTs

- RCTs more suited for AE that:
 - Are predictable, defined or well-recognized,
 - Have common background incidence
 - Or develop soon after starting treatment

Relevant Study Designs: Observational

- Non-randomized / database designs more suited for AE that:
 - Unexpected or not predicted in trial
 - Relatively low background incidence
 - Requires longer term follow-up

Searching and Data Sources

- How far should I search beyond typical databases?
- Methods research substantial missing AE data can be retrieved from unpublished sources
- Use of unpublished data best suited to reviews that have pre-specified AE of interest (otherwise risk of being swamped with too much data).
- Su Golder will cover this in detail on May 25th

Decision Point: Interpreting Zero Events

- How do we deal with statements such as 'No significant harm was found' or 'Safe and well-tolerated'?
- Multiple potential interpretations:
 - We didn't measure it/ we didn't ask participants
 - We measured it but didn't find anything (true zero)
 - We measured and analysed it but the findings were not statistically significant, so we didn't report the data

Interpreting Zero Events

- High risk of type II error (false reassurance that intervention is safe) because trials not designed for uncommon/unexpected AE
- Interpretation on absence of significant harm and zero events should be judged in context:
 - Sample size
 - Length of follow-up
 - Adequate definition, monitoring & risk of misclassification
- Conclusions or GRADE should be tempered according to context (e.g. imprecision, likelihood of estimates changing with further study)

Risk of Bias (ROB)

- Update ROB tools assess each outcome separately e.g. blinding of outcome assessor
 - Not relevant to Mortality AE
 - But relevant to judgement of "cardiovascular cause of death"
 - Participant blinding is relevant to symptom 'nausea'
- ROB tools not feasible with broad sweep, exploratory AE review that consider lots of outcomes

Selective Non-Reporting

- Inevitable when trials measure hundreds of AE, but can only report a few in published manuscripts
- What is the direction of reporting bias?
 - Choose to report only those with significant harm?
 - Or emphasize safety by focusing on areas where no harm was found?
- Direction of bias depends on standpoint of researcher
- Interpretation of asymmetry testing or funnel plot is challenging

Example of Outcomes Table

Study ID	Review harm outcomes	
	(including odds ratio with 95% confidence interval)	
	1: AE 1	2: AE 2
Study 1	<u>Full:</u>	Not reported
	OR 1.11 (95% Cl, 0.89 to	
	1.34)	
Study 2	Not reported	<u>Partial</u> :
		OR 1.11 (95% Cl not reported)
Study 3	Not reported	<u>Partial:</u>
		Authors stated: "No significant
		difference observed"; Effect estimates
		not reported

Bias in Review Process – Post-hoc Decisions

- AE reviews particularly susceptible to bias because numerous points where post-hoc decisions are made:
 - Inconsistent outcome definitions what to extract, which ones to pool (or not)
 - Poor reporting in primary studies ambiguity in interpretation
 - Exploratory nature of AE reviews, with multiple testing
- Decisions in AE review should be transparently reported

Conclusions

- Important Differences between Reviews of Intended Outcomes and Adverse Effects
- Review Methods mainly determined by initial decision on what AE outcomes are of most interest
- Formulating study question is most important step the subsequent path flows on from there.
- Diversity of AE and poor reporting are the main challenges that need to be overcome