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* Study i estimates parameter 6;
 Heterogeneity:

0; + 0, for at least one pair

e Atest for heterogeneity has poor
properties and asks an uninteresting
guestion
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* Post doc on Medical Research Council grant (Simon Thompson,
Doug Altman, Jon Deeks)

* Included an aim to find a better way to measure heterogeneity

e Solved?
12 = %D o 1009 N
Q T2+072

(k = number of studies)

e [ originally stood for “intraclass”
* (I now say it stands for “inconsistency”)
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An alternative to testing for
heterogeneity in a meta-analysis
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Concluding remarks

The extent of heterogeneity is important for determining
consistency, and hence generalizability of review findings

The test is a poor way of measuring this
H and 1?2 quantify the extent of heterogeneity

Uncertainty about the heterogeneity can be described

H and/or |° should be presented in Cochrane reviews in \
preference to the test |

Clinical aspects of studies and size of treatment effect
must also play an important réle
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© 10.9 Meta-analysis Thresholds for the interpretation of the /2 statistic can be misleadinﬁ, since the importance of
of time-to-event inconsistency depends on several factors. A rough guide to interpretation in the context of meta-analyses
outcomes of randomized trials is as follows:
E—
10.10
- ! L3
Heterogeneity s 0% to 40%: might not be important; 2 Is not a n
10.10.1 What is ® 30% to 60%: may represent moderate heterogeneity™; .
heterogeneity? ® 50% to 90%: may represent substantial heterogeneity*; aroge n erty
©10.10.2 ® 75% to 100%: considerable heterogeneity™.
Identifying and c
ing .arry V. Hedges® and

measurng *The importance of the observed value of 1> depends on (1) magnitude and direction of effects, and (2)
heterogeneity ) ) _ )

strength of evidence for heterogeneity (e.g. P value from the Chi” test, or a confidence interval for /%
10.10.3

Strategies for
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uncertaintz in the value of / is substantial when the number of studies is small).
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