

How to calculate absolute effects

Nicole Skoetz

Trusted evidence. Informed decisions. Better health.

How to calculate absolute effects

- For event-free survival
- For events

Pre-assumption

Pooled hazard ratio (HR) has been correctly calculated

How to estimate baseline risk

- Baseline risk should be representative of type of individuals it is intended to be applied to
- Ideally from appropriate observational studies with representative patients
- Clearly describe in footnotes where baseline risk comes from and which specific time point has been chosen

How to estimate baseline risk from Kaplan-Meier curves

- Included trials evaluating patient groups being at different risks could be grouped according to risks
- Representative trials for each risk group could be used to estimate baseline risk
- Time point chosen should not be extrapolated from Kaplan-Meier curves (e.g. Kaplan-Meier curve for 2 years provided: can't estimate risk for 5 years!)

- Uncertainty of baseline risk is not included in confidence interval of absolute effect
- Uncertainty of baseline risk is not considered in GRADEing (certainty of evidence refers to pooled effect estimate only)

Event-free survival

Reminder: Event-free survival: OS higher than PFS (same time point)

Outcomes	Anticipated absolute effects' (95% CI)		Relative effect (95% CI)	№ of participants	Certainty of the evidence	Comments	
	Risk with chemotherapy only	Risk with intervention in addition to chemotherapy		(studies)	(GRADE)		
Overall survival	Moderate						
follow up: 24							
months	900 per 1,000						
Progression-free	Moderate						
survival							
follow up: 24 months	800 per 1,000						

Absolute effects for event-free survival

Based on methods described by Tierney et al

$$p1 = \exp(\log(p0) \times HR)$$

Example:

- Pooled HR of 0.42 (95% CI 0.25 to 0.72)
- Indicating lower risk of death over time in intervention group
- Estimating proportion of patients with event-free survival in control group at 2 years of 900 per 1000:

$$p1 = \exp(\log(0.9) \times 0.42) = 0.956$$

956 per 1000 people will be alive with experimental intervention at 2 years

GRADEpro GDT

- https://gradepro.org/
- Please use GRADEpro GDT with google chrome

Example 1: event-free survival: overall survival

Pooled **HR of 0.42 (95% CI 0.25 to 0.72**)

Indicating a lower risk of death over time in intervention group

Estimating a proportion of patients with event-free survival in control group at **time point 2 years of 900 per 1000**

Events

Reminder: Events: Mortality higher than combined outcome

Outcomes	Anticipated absolute effects' (95% CI)		Relative effect (95% CI)	№ of participants	Certainty of the evidence	Comments
	Risk with chemotherapy, only	Risk with intervention in addition to chemotherapy		(studies)	(GRADE)	
Mortality (instead of overall survival) follow up: 24 months	Moderate 100 per 1,000					
Mortality, relapse and progress (instead of progression-free survival) follow up: 24 months	200 per 1,000					

Absolute effects for events

Similar formula can be used

$$r1 = 1 - \exp(\log(1 - r0) \times HR)$$

 Hazard ratio = 0.42 (95% CI 0.25 to 0.72), assuming control risk of events (e.g. for mortality, people being dead) at 2 years = 100 per 1000

$$r1 = 1 - \exp(\log(1-0.1) \times 0.42) = 0.044$$

• 44 per 1000 people will be dead with the experimental intervention at 2 years

Example 2: events: mortality

Pooled **HR of 0.42 (95% CI 0.25 to 0.72**) indicating a lower risk of death over time in intervention group

Estimating a proportion of patients with events in the control group at the **time point 2 years of 0.1**

GRADEpro GDT

https://gradepro.org/

Any questions?

Many thanks for your attention!

Contact:

Nicole.skoetz@uk-koeln.de

Trusted evidence. Informed decisions. Better health.

