A comparison of arm-based and contrast-based approaches to network meta-analysis (NMA)

Ian White <ian.white@ucl.ac.uk>
MRC Clinical Trials Unit at UCL

Cochrane Statistical Methods Group Webinar
14th June 2017
Background

• The choice between arm-based and contrast-based NMA was until recently fairly clear
• Recent work by Hwanhee Hong and others, working with Brad Carlin, has promoted a new concept of arm-based NMA
• There has been heated discussion over pros and cons of this new approach

• I’ll set out my understanding of the key issues. Aims:
 – to find some terminology that we can all agree on
 – to recognise similarities and differences, strengths and weaknesses of both approaches
• I’ll use well-known data to clarify ideas, and artificial data to illustrate what the methods can do in principle
Plan

1. **What are arm-based and contrast-based NMA?**
2. Models and their key features
3. Breaking randomisation
4. Missing data aspects
5. Estimands
6. Summary
Smoking data (yawn)

<table>
<thead>
<tr>
<th>study</th>
<th>design</th>
<th>dA</th>
<th>nA</th>
<th>dB</th>
<th>nB</th>
<th>dC</th>
<th>nC</th>
<th>dD</th>
<th>nD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ACD</td>
<td>9</td>
<td>140</td>
<td>.</td>
<td>.</td>
<td>23</td>
<td>140</td>
<td>10</td>
<td>138</td>
</tr>
<tr>
<td>2</td>
<td>BCD</td>
<td>.</td>
<td>.</td>
<td>11</td>
<td>78</td>
<td>12</td>
<td>85</td>
<td>29</td>
<td>170</td>
</tr>
<tr>
<td>3</td>
<td>AB</td>
<td>79</td>
<td>702</td>
<td>77</td>
<td>694</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>4</td>
<td>AB</td>
<td>18</td>
<td>671</td>
<td>21</td>
<td>535</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>5</td>
<td>AB</td>
<td>8</td>
<td>116</td>
<td>19</td>
<td>146</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>6</td>
<td>AC</td>
<td>75</td>
<td>731</td>
<td>.</td>
<td>.</td>
<td>363</td>
<td>714</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>7</td>
<td>AC</td>
<td>2</td>
<td>106</td>
<td>.</td>
<td>.</td>
<td>9</td>
<td>205</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>20</td>
<td>AD</td>
<td>0</td>
<td>20</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>9</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>BC</td>
<td>.</td>
<td>.</td>
<td>20</td>
<td>49</td>
<td>16</td>
<td>43</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>22</td>
<td>BD</td>
<td>.</td>
<td>.</td>
<td>7</td>
<td>66</td>
<td>.</td>
<td>.</td>
<td>32</td>
<td>127</td>
</tr>
<tr>
<td>23</td>
<td>CD</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>12</td>
<td>76</td>
<td>20</td>
<td>74</td>
</tr>
<tr>
<td>24</td>
<td>CD</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>9</td>
<td>55</td>
<td>3</td>
<td>26</td>
</tr>
</tbody>
</table>

successes and participants in arm A ...
What are arm-based and contrast-based NMA?

- Term goes back to Salanti et al (2008)

- Arm-based: model the arm-level data
 - #successes + binomial likelihood; or
 - log odds of success + approximate Normal likelihood

- Contrast-based: model the contrasts (trial-level summaries; two-stage)
 - log odds ratio + approximate Normal likelihood

- Pros and cons are well known:
 - binomial likelihood for arm-based model is more accurate but usually requires BUGS analysis
 - approximate Normal likelihood for contrast-based model is less accurate but fast e.g. `mvmeta` in Stata
Why the debate now?

• Hong et al use “arm-based” and “contrast-based” in a new way, referring to different model parameterisations
 – really, different models
 – applies only to an arm-based likelihood
• Although much of their work also covers multiple outcomes in NMA, I am going to consider what their work says for a single outcome
Scope of this talk

- Arm-based likelihood
- **Binary outcome** with treatment effects measured by log odds ratios
- **Bayesian analysis** with Cochrane-based informative priors from Turner et al (2012)
- Assuming consistency

but all the ideas apply more generally
Plan

1. What are arm-based and contrast-based NMA?
2. **Models and their key features**
3. Breaking randomisation
4. Missing data aspects
5. Estimands
6. Summary
Notation

- Trials: $i = 1, \ldots, n$
- Treatments: $k = 1, \ldots, K$
- $R_i = \text{set of treatments included in trial } i \text{ (“design”)}$
- $n_{ik} = \text{number of participants in treatment arm } k \text{ of trial } i$
- $d_{ik} = \text{number of events in treatment arm } k \text{ of trial } i$
 - $d_{ik} \sim Bin(n_{ik}, \pi_{ik})$
- $\theta_{ik} = \text{parameter of interest in treatment arm } k \text{ of trial } i$
 - here the log odds, $\theta_{ik} = \log\left(\frac{\pi_{ik}}{1-\pi_{ik}}\right)$
- e.g. Smoking trial 1:

<table>
<thead>
<tr>
<th>study</th>
<th>design</th>
<th>dA</th>
<th>nA</th>
<th>dB</th>
<th>nB</th>
<th>dC</th>
<th>nC</th>
<th>dD</th>
<th>nD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ACD</td>
<td>9</td>
<td>140</td>
<td>.</td>
<td>.</td>
<td>23</td>
<td>140</td>
<td>10</td>
<td>138</td>
</tr>
</tbody>
</table>

$i = 1, R_1 = \{A, C, D\}, d_{1A} = 9, n_{1A} = 140, \text{ etc.}$
General notation for models

I’ll use

- superscripts C and A for contrasts and arms
- i for trial; k, k' for treatments
- δ for study-specific parameters
 - hence $\delta_{ikk'}^C$ for contrasts, δ_{ik}^A for arms

I’m going to follow the meta-analysis convention that study-specific effects have mean μ and heterogeneity σ^2:

- contrast parameter $\delta_{ikk'}^C$ has mean $\mu_{kk'}^C$ and heterogeneity SD $\sigma_{kk'}^C$
- arm parameter δ_{ik}^A has mean μ_k^A and heterogeneity SD σ_k^A

I’ll take treatment 1 as reference treatment for the NMA
 - but all models are symmetric

- For each study, denote a baseline treatment \(b_i \)
 - usually the first numbered
- Model for study \(i \) and treatment arm \(k \in R_i, k \neq b_i \):
 \[
 \theta_{i k} = \alpha_{iB} + \delta_{iBk}^C
 \]
 - "B" denotes the use of a study-specific baseline
 - \(\alpha_{iB} \) is the log odds in the baseline treatment arm.
 I’ll call it the “study intercept” (also “underlying risk” or “baseline risk”)
 - \(\alpha_{iB} \) are fixed effects of study
 - \(\delta_{iBk}^C \) are random treatment effects
 \[
 \delta_{iBk}^C \sim N(\mu_{1k}^C - \mu_{1b_i}^C, \sigma_{C2}^2)
 \]
 - \(\mu_{1k}^C \) is the “overall" log odds ratio between treatment \(k \) and treatment 1 (of primary interest)
 - \(\sigma_{C2}^2 \) is the heterogeneity variance
Note on “fixed effects”

- “Fixed effects” here refers to a set of parameters that are unrelated to each other
 - as opposed to “random effects” where the parameters are modelled by a common distribution
 - standard statistical meaning of the term
- “Fixed effects” does NOT refer to a meta-analysis model that ignores heterogeneity
 - I’d call that the “common-effect” model
Heterogeneity in the LA model

- σ^{C2} is the heterogeneity variance
- The above model assumes common heterogeneity variance σ^{C2} across all treatment contrasts
 - LA called this “homogeneous treatment variance”
 - so the heterogeneity is homogeneous!
 - I prefer “common heterogeneity variance”
- Non-common heterogeneity can be allowed:
 $$\delta_{iBk} \sim N(\mu_{1k} - \mu_{1b}, \sigma_{bi,k}^{C2})$$
 - but tricky to estimate in practice
 - and need to consider “second order consistency”
• I’m now going to extend the LA model in 3 steps to bring us to Hong et al’s arm-based model
Model 2: “LAplus” model

- Avoid study-specific baselines

\[\theta_{ik} = \alpha_{i1} + \delta_{i1k}^C \text{ where } \delta_{i11}^C = 0 \]
 - study intercepts \(\alpha_{i1} \) are fixed effects
 - model applies for all \(k \): i.e. this model also describes outcomes in missing arms
 - but model statement in missing arms has no impact

- Now write \(\delta_i^C = (\delta_{i12}^C, ..., \delta_{i1K}^C) \)
 - model \(\delta_i^C \sim N(\mu^C, \Sigma^C) \)

- Common heterogeneity model: \(\Sigma^C = \sigma^{C2}P \) where \(P \) has ones on the diagonal and halves off the diagonal

- This is only a re-parameterisation of the basic LA model
 - i.e. fit to the data is the same
Bringing in missing data?

- Hong et al claim “Although a standard MTC approach (e.g., Lu and Ades (2006)) models the observed data, we can gain additional information from the incomplete records”
- This is not true: if the missing data are ignorable then modelling the observed data y^{obs} is the same as modelling the complete data (y^{obs}, y^{mis})
- Hong et al’s approach is “data augmentation”: to draw samples from $(\theta | y^{obs})$, it is sometimes computationally convenient to draw samples from $(y^{mis}, \theta | y^{obs})$
 - NB causes slower mixing in MCMC
Hong et al also say “Our own models can more easily and flexibly incorporate correlations between treatments and outcomes”

I think this is true for non-common heterogeneity:

- because we describe the heterogeneity parameters via a matrix Σ^C, we just require Σ^C to be positive semi-definite

- whereas the LA model must enforce “second order consistency” restrictions on the σ_{bk}^{C2}
Model 3 (CB): study intercepts α are random

- Model 2 was
 - $\theta_{ik} = \alpha_{i1} + \delta_{i1k}^C$ where $\delta_{i11}^C = 0$
 - $\delta_i^C = (\delta_{i12}^C, ..., \delta_{i1K}^C) \sim \mathcal{N}(\mu^C, \Sigma^C)$

- Model 3 adds a model for the study intercepts:
 - $\alpha_{i1} \sim \mathcal{N}(\mu_1^\alpha, \sigma_1^{\alpha2})$
 - random effects instead of fixed effects
 - again this goes right back to Lu & Ades (2004)

- This means that study intercepts in small studies are shrunk towards an overall mean
 - may gain precision
 - brings concerns about “between-study information” (see later)
Model 4 (AB): Hong’s full arm-based model

- Model 3 was
 \[
 \theta_{ik} = \alpha_{i1} + \delta_{i1k} \quad \text{where} \quad \delta_{i11} = 0
 \]
 \[
 \alpha_{i1} \sim N(\mu_1^\alpha, \sigma_1^\alpha^2)
 \]
 \[
 \delta_i^C = (\delta_i^{C_1}, \ldots, \delta_i^{C_K}) \sim N(\mu^C, \Sigma^C)
 \]
- Model 4 is the same plus correlation:
 \[
 (\alpha_{i1}, \delta_i^C) \sim N(\mu^*, \Sigma^*)
 \]
- Hong et al parameterised it symmetrically:
 \[
 \theta_{ik} = \mu_k^A + \eta_i^A
 \]
 \[
 \mu_k^A \quad \text{are fixed effects representing overall mean log odds on treatment} \ k
 \]
 \[
 \eta_i^A \quad \text{are mean-zero random effects}
 \]
 \[
 \eta_i^A = (\eta_{i1}^A, \ldots, \eta_{iK}^A) \sim N(0, \Sigma^A)
 \]
- Could have written \(\theta_i \sim N(\mu^A, \Sigma^A) \)

Key feature of model 4: treatment effects are related to study intercepts

Either way, the model has
- one parameter per treatment
- free variation between studies described by a \(K \times K \) variance matrix
What’s new in model 4?

- Model 4 is
 \[\theta_{ik} = \alpha_{i1} + \delta_{ik}^C \text{ where } \delta_{i1}^C = 0 \]
 \[(\alpha_{i1}^A, \delta_{i}^C) \sim N(\mu^*, \Sigma^*) \]
- Treatment effects \(\delta_{ik} \) are allowed to correlate with study intercepts \(\alpha_{i1} \)
- This sort of model is used to relate treatment effects to underlying risk (baseline risk)
- I think the proposal to use a model with treatment effect associated with reference-treatment mean to estimate an overall treatment effect is novel and deserves debate
Summary so far: models for θ_{ik}

<table>
<thead>
<tr>
<th>Model</th>
<th>Study intercept</th>
<th>Study * treatment</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LA</td>
<td>α_{iB}</td>
<td>~ fixed</td>
<td>$+ \delta_{iBk}^C$ (0 if $k = b_i$) $\delta_{iBk}^C \sim N(\mu_{1k}^C - \mu_{1bi}^C, \sigma_{C2}^2)$</td>
</tr>
<tr>
<td>LAplus</td>
<td>α_{i1}</td>
<td>~ fixed</td>
<td>$+ \delta_{i1k}^C$ (0 if $k = 1$) $\delta_i^C \sim N(\mu_i^C, \Sigma_i^C)$</td>
</tr>
<tr>
<td>CB</td>
<td>α_{i1}</td>
<td>$\sim N(\mu_1^a, \sigma_1^a^2)$</td>
<td>$+ \delta_{i1k}^C$ (0 if $k = 1$) $\delta_i^C \sim N(\mu_i^C, \Sigma_i^C)$</td>
</tr>
<tr>
<td>AB</td>
<td>α_{i1}</td>
<td>see \rightarrow</td>
<td>$+ \delta_{i1k}^C$ (0 if $k = 1$)</td>
</tr>
<tr>
<td>or</td>
<td></td>
<td></td>
<td>δ_{ik}^A $\delta_i^A \sim N(\mu_i^A, \Sigma_i^A)$</td>
</tr>
</tbody>
</table>

Treatment effects (μ^C or μ^A) are fixed effects in all these models. LAplus, CB and AB all allow non-common heterogeneity variance.
Common-heterogeneity models

<table>
<thead>
<tr>
<th>Model</th>
<th>Study * treatment</th>
<th>Added assumption for common heterogeneity</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA</td>
<td>(\delta_{iBk}^C)</td>
<td>(\delta_{iBk}^C \sim N(\mu_{1k}^C - \mu_{1bi}^C, \sigma^{C2}))</td>
</tr>
<tr>
<td>LAplus</td>
<td>(\delta_{i1k}^C)</td>
<td>(\delta_i^C \sim N(\mu^C, \Sigma^C))</td>
</tr>
<tr>
<td>CB</td>
<td>(\delta_{i1k}^C)</td>
<td>(\delta_i^C \sim N(\mu^C, \Sigma^C))</td>
</tr>
<tr>
<td>AB</td>
<td>(\delta_{i1k}^C)</td>
<td>((\alpha_{i1}, \delta_i^C) \sim N(\mu^, \Sigma^))</td>
</tr>
<tr>
<td>or</td>
<td>(\delta_{ik}^A)</td>
<td>(\delta_i^A \sim N(\mu^A, \Sigma^A))</td>
</tr>
</tbody>
</table>

where \(P = \begin{pmatrix} 1 & .5 & \cdots & .5 \\ .5 & 1 & \cdots & .5 \\ \vdots & \vdots & \ddots & \vdots \\ .5 & .5 & \cdots & 1 \end{pmatrix} \)

* Hong et al used diagonal matrices here, or \(\propto \) identity
Results: treatment effects μ^C

smoking estimated contrasts

<table>
<thead>
<tr>
<th>Model</th>
<th>B vs A</th>
<th>C vs A</th>
<th>D vs A</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAplus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AB</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity
- **Common**
- **Not**

Log odds ratio

-1 0 1 2
Results: heterogeneity SDs σ^C, σ^C_{kl}
Key points from this section

Key differences between Lu-Ades (LA) and arm-based (AB) models are

1. Study intercepts are random
2. Study*treatment effects (i.e. the random heterogeneity) are associated with the study intercepts (underlying risk)

An unimportant difference is

3. Arm-based models describe missing arms as well as observed arms

Should also remember

4. Going beyond common heterogeneity can be tricky in all models
Plan

1. What are arm-based and contrast-based NMA?
2. Models and their key features
3. **Breaking randomisation**
4. Missing data aspects
5. Estimands
6. Summary
Breaking randomisation / Between-study information

- A major concern about random study intercepts is that between-trial information is potentially used in the analysis
 - sometimes called “breaking randomisation”
 - “I consider that in practice little harm is likely to be done”
Artificial data sets

- I’m going to show analyses of artificial data sets chosen to explore what COULD go wrong
- I’ll use simple NMAs of 5 A-B studies and 5 A-C studies
- A is reference
- Binary outcome

First example has
- A-B studies in low risk populations (low odds in arm A)
- A-C studies in high risk populations (high odds in arm A)
- No treatment effects at all
- This is extreme for AB models, because study intercepts in A-C studies will be pulled down and study intercepts in A-B studies will be pulled up
 - hence expect to see C > A > B
Artificial data 1

L’Abbe plot overlaying B vs A and C vs A
Cross-hairs are 95% CIs for arm-specific log odds
Diagonal is line of equality
Artificial data 1: results

AB with non-common heterogeneity suffers small bias of ± 0.03 (in fact all CB and AB have some tiny bias)
Key points from this section

1. Breaking randomisation is a theoretical problem, but seemingly not a practical problem

Should we be reassured, or is breaking randomisation a “face validity” issue?
Plan

1. What are arm-based and contrast-based NMA?
2. Models and their key features
3. Breaking randomisation
4. Missing data aspects
5. Estimands
6. Summary
Missing data aspects

- Again consider a network of treatments A, B and C
- Here we consider all studies as A-B-C studies
 - so C is a “missing arm” in an A-B study
- The problem is conceptually quite clear. If A-B studies differ systematically from A-C studies, say, then bias can occur especially in the B-C comparison.
- Question: does bias occur if A-B studies differ from A-C studies in
 - mean in treatment A?
 - the A-B or A-C treatment effects?
- It’s also clear that the problem of missing arms is related to the problem of arm sizes
 - not having a C arm is an extreme case of an A-B-C study whose C arm is smaller than the A and B arms
Is NMA a missing data problem?

• e.g. back to the smoking data: study 1 has a missing B arm, but how many patients were (or weren’t?) in it?

• Do we have missing n’s as well as missing d’s? (treating design features n’s as “data”):

<table>
<thead>
<tr>
<th>study</th>
<th>design</th>
<th>dA</th>
<th>nA</th>
<th>dB</th>
<th>nB</th>
<th>dC</th>
<th>nC</th>
<th>dD</th>
<th>nD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ACD</td>
<td>9</td>
<td>140</td>
<td>.</td>
<td>.</td>
<td>23</td>
<td>140</td>
<td>10</td>
<td>138</td>
</tr>
</tbody>
</table>

• Or do we simply have no participants?:

<table>
<thead>
<tr>
<th>study</th>
<th>design</th>
<th>dA</th>
<th>nA</th>
<th>dB</th>
<th>nB</th>
<th>dC</th>
<th>nC</th>
<th>dD</th>
<th>nD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ACD</td>
<td>9</td>
<td>140</td>
<td>0</td>
<td>0</td>
<td>23</td>
<td>140</td>
<td>10</td>
<td>138</td>
</tr>
</tbody>
</table>

• Or do we know the size of the missing arm?:

<table>
<thead>
<tr>
<th>study</th>
<th>design</th>
<th>dA</th>
<th>nA</th>
<th>dB</th>
<th>nB</th>
<th>dC</th>
<th>nC</th>
<th>dD</th>
<th>nD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ACD</td>
<td>9</td>
<td>140</td>
<td>.</td>
<td>140</td>
<td>23</td>
<td>140</td>
<td>10</td>
<td>138</td>
</tr>
</tbody>
</table>
A compromise

- I am going to proceed by assuming that we know the sizes of the missing arms, had they been observed
 - not a bad assumption in many NMAs where most trials randomise equally
 - but clearly not right and open to improvement

- I now ask: what assumptions are (implicitly) made about the missing data by the different models?
- Ignoring the missing data makes an implicit missing at random (MAR) assumption, but there are different sorts of MAR assumption
A contrast-based likelihood

• If our likelihood models contrasts y_{AB}, y_{AC} then our analysis is valid provided that y_{AB}, y_{AC} are MAR

• This means that the probability of particular arms being observed does not depend on the unobserved contrasts, given the observed contrasts
 – “contrast-MAR”

• E.g. for a study i of design AB,
 – $p(R_i = AB| y_{iAB}, y_{iAC}) = p(R_i = AB| y_{iAB})$

• Note: some authors claim contrast-MAR requires MCAR
 – this is true with all two-arm studies
 – not true in general with multi-arm studies
An arm-based likelihood

- If our likelihood models arm-specific outcomes d_A, d_B, d_C then our analysis is valid provided that d_A, d_B, d_C are MAR
- This means that the probability of particular arms being observed does not depend on the unobserved arm outcomes, given the observed arm outcomes
 - “arm-MAR”
- E.g. for a study i of design AB,
 - $p(R_i = AB \mid d_{iA}, d_{iB}, d_{iC}) = p(R_i = AB \mid d_{iA}, d_{iB})$
An example of data that are arm-MAR and not contrast-MAR

- Suppose all trials have an arm A
- Suppose (as in Artificial Data 1) that trials with low mean on arm A are more likely to have B as comparator, and trials with high mean on arm A are more likely to have C as comparator
 - and that no other aspect of the likely outcomes affects the design
- Then the data are arm-MAR, because design depends on arm A, which is observed in an arm-based likelihood
- But the data are not contrast-MAR, because arm A is unobserved in a contrast-based likelihood
- Whether bias occurs in a contrast-based likelihood depends on whether A-B or A-C treatment effect is also related to arm A outcome
Model mis-specification

- The above properties of validity under MAR only hold if models are correctly specified.
- In particular, what happens if we use an arm-based likelihood to fit models 1-3?
 - i.e. models where the treatment effect is assumed independent of the study intercept?
- It turns out (tentatively) that this is like using a contrast-based likelihood:
 - i.e. models 1-3 are only validly fitted under contrast-MAR.
Exploration using more artificial data

- Bias is likely to occur in models 1-3, if both the above arrows exist
Artificial data 1

-2 -1.5 -1 -0.5 0

Observed log odds in arm A

B vs A C vs A
Artificial data 2

Observed log odds in arm A

-2 -1.5 -1 -0.5 0

B vs A

C vs A

log OR

Reference arm mean

Design

Treatment effect
Artificial data 3

Observed log odds in arm A

B vs A

C vs A

Reference arm mean

Design

Treatment effect
Artificial data 4

Observed log odds in arm A

Reference arm mean

Design

Treatment effect

B vs A

C vs A

MRC Clinical Trials Unit at UCL
Artificial data

Design

Treatment effect

Reference arm mean

bindat2 estimated contrasts

<table>
<thead>
<tr>
<th>Model</th>
<th>B vs A</th>
<th>C vs A</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAplus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

log odds ratio

Heterogeneity

Common

Not

AB with non-common heterogeneity suffers small bias of ±0.03 (in fact all CB and AB have some tiny bias)
Artificial data 2

Reference arm mean

Design

Treatment effect

bindat1 estimated contrasts

<table>
<thead>
<tr>
<th>Model</th>
<th>B vs A</th>
<th>C vs A</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAplus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity

- Common
- Not

Only AB with non-common heterogeneity can see that B \approx C
Artificial data 3

Every method works

bindat4 estimated contrasts

- **B vs A**
 - LA
 - LApplus
 - CB
 - AB

- **C vs A**
 - LA
 - LApplus
 - CB
 - AB

Reference arm mean

Design

Treatment effect

Heterogeneity

- Common
- Not

Observed log odds in arm A

Observed log odds in arm B or C

Reference arm mean

log odds ratio

-1 -0.5 0 0.05 0.1

-1 -0.5 0 0.05 0.1

MRC Clinical Trials Unit at UCL
Artificial data 4

Reference arm mean

Design

Treatment effect

bindat3 estimated contrasts

<table>
<thead>
<tr>
<th>Model</th>
<th>B vs A</th>
<th>C vs A</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAplus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

log odds ratio

Heterogeneity

- Common
- Not

Every method works
What do we really believe about missing data? [if time]

- Hard to believe the design depends on data actually observed in observed arms
- Easier to believe the design depends on true means in those arms
- So I can imagine making a working assumption that
 \[[N_i, R_i | \mu_i^A] = [N_i, R_i | \mu_{R_i}^A] \]
 where \(N_i \) is the set of sample sizes chosen for the arms in \(R_i \)
- Would involve complex modelling as this isn’t MAR
 – but might be close enough to MAR?
Key points from this section

1. There are datasets where the arm-based model gives very different results from the LA model
 – and arguably better results
2. Such datasets have study intercept (underlying risk) ~ design
 – and study intercept ~ treatment effect
3. However they risk
 – using between-study information
 – sensitivity to choice of effect measure
Plan

1. What are arm-based and contrast-based NMA?
2. Models and their key features
3. Breaking randomisation
4. Missing data aspects
5. **Estimands**
6. Summary
Estimands

- Estimand: the thing we want to estimate (causal inference term)
- Model 1 (LA) estimates the $\mu_{1k}^C (k = 2, ..., K)$ and σ_{C2}
- The μ_{1k}^C would commonly be taken as the main estimands
 - “overall” log odds ratios for k vs. 1
 - and of course other contrasts derived from the μ^C under consistency: $\mu_{kk'}^C = \mu_{1k'}^C - \mu_{1k}^C$ etc.
 - also rankings, prediction intervals, ...
Marginal estimands (1)

- In analysis of longitudinal data, there’s a difference between “cluster-specific” (conditional on cluster) and “population-averaged” (marginal) estimands
- Similar issues here
- \(\mu_{1k}^c \) can be interpreted as a treatment effect conditional on study
- Zhang et al (2014) show that the parameters \(\mu_k^A \) have a marginal interpretation that may be of relevance in a public health setting
- Thus we might compute \(\pi_k^A = logit^{-1}(\mu_k^A) \) and report marginal RR or RD
Marginal estimands (2)

- Dias and Ades: “While randomised controlled trials are unquestionably the best data sources to inform relative effects, the data sources that best inform the absolute effects might be cohort studies, a carefully selected subset of the trials included in the meta-analysis, or expert opinion.”
 - they wish to apply the model for (relative) treatment effect, derived from NMA, to absolute means/risks in order to estimate absolute changes in mean/risk due to treatment
 - seems right to me
Marginal estimands: 2 questions

1. What estimand do we want, if treatment effect is related to study intercept?
 – insist on reporting treatment effects conditional on study intercept?
 (probably best with qualitative effect modification)
 – or report a summary?
 (appropriate with quantitative effect modification?)

2. To what extent should our models allow for treatment effect related to study intercept, even when there is no evidence for this?
 – just as we expect allowance for heterogeneity, even when there is no evidence for heterogeneity?
Absolute estimands? [if time]

• Hong et al claim “absolute measures of effect will often be of genuine interest, for example, the absolute amount of reduction in blood glucose produced by a given diabetes treatment”
 – they refer to the μ_k^A as “absolute treatment effect estimates”
 – I think this is a misconception, equating an observed change to a causal effect
Key points from this section

- Estimands need careful definition
- Estimands can be computed from either model
- Most estimands require doing some extra work
Plan

1. What are arm-based and contrast-based NMA?
2. Models and their key features
3. Breaking randomisation
4. Missing data aspects
5. Estimands
6. Summary
Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>Non-common heterogeneity?</th>
<th>Uses between-study information?</th>
<th>Treatment effects relate to reference risk?</th>
<th>Missing data assumption</th>
<th>Main estimands</th>
<th>Other possible estimands</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA</td>
<td>Tricky</td>
<td>No</td>
<td>No</td>
<td>Contrast-MAR</td>
<td>Study-conditional contrast</td>
<td>Any</td>
</tr>
<tr>
<td>LAp</td>
<td>Fine</td>
<td>No</td>
<td>No</td>
<td>Contrast-MAR</td>
<td>Study-conditional contrast</td>
<td>Any</td>
</tr>
<tr>
<td>CB</td>
<td>Fine</td>
<td>Yes (very little)</td>
<td>No</td>
<td>Contrast-MAR</td>
<td>Study-conditional contrast</td>
<td>Any</td>
</tr>
<tr>
<td>AB</td>
<td>Fine</td>
<td>Yes (little)</td>
<td>Yes</td>
<td>Arm-MAR</td>
<td>Marginal means and contrasts</td>
<td>Any</td>
</tr>
</tbody>
</table>
Some points that worry me [if time]

1. Non-common heterogeneity models are implemented in practice with inverse Wishart priors - but often these are more informative than we might wish

2. Symmetry: CB model is asymmetrical across treatments, but LA and AB are symmetrical

3. Is between-study information a matter of bias?
 – i.e. do we only care if it affects results on average over NMAs?
 – or do we care about between-study information changing the results of a specific NMA?
Future research

1. How much does between-studies information matter in practice? When does it matter?

2. Likely missingness mechanisms are that studies are designed based on true study intercepts, not observed ones. What effect does this have?

3. How often does study intercept relate to design?

4. What estimand do we want, if treatment effect is related to study intercept?

5. Can we express our assumptions about arm sizes as we express our assumptions about missing arms?

6. Can we get benefits of LAplus and AB models by having fixed study effects α_i and treatment effects $\delta_i \sim \alpha_i$?

7. Why is between-studies information so weak?

Coming soon: network bayes
Key points

1. Key differences between arm-based and LA models are
 - random study effects
 - random study*treatment effects (i.e. random heterogeneity) that are associated with the study intercepts (underlying risks)
2. Breaking randomisation is a theoretical problem, but seemingly not a practical problem
3. There are datasets where the arm-based model gives very different results from the LA model and arguably better results. Such datasets have study intercept ~ design and ~ treatment effect
4. Estimands can be computed from either model